
CS 88 Sample Exam.
Spring 2021 final

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

0.0.1 Basic Directions

• You have 3 hours, 180 minutes to complete the exam.
• You must not collaborate with anyone inside or outside of CS88.
• You may use the internet, the CS88 site and all it’s resources,
• However, you must not directly search for a question or post questions online.
• You may search for generic Python concepts.
• You may use your Terminal and Python Tutor.

– However, these are more strict about syntax! The exam is designed to be completed without these
tools, and using them may take up some time. Be mindful of how long you spend on each question.

• You should have received an email with a link for your Zoom meeting, and ideally it will show up in the
Zoom app when signed in. If you can, please use that.

• At this point you should have started your Zoom / screen recording. If something happens during the
exam, focus on the exam!

• Do not spend more than a few minutes dealing with proctoring.
• Your task is to show us how much you’ve learned, not to mess with technology.

Take a deep breath. . .

Good luck, and good skill!

(a) What is your full name?

(b) What is your student ID number?

(c) What is your Berkeley email address?

Exam generated for <EMAILADDRESS> 3

1. Reference Links

0.0.2 References

These are references to use during the exam. When you see a Link or Tree, you should use these as the class
definitions.

Clarifications Document: https://docs.google.com/document/d/16-L1PDa63Jn-FZ63CsPJbIGLeDkYV9gng41ISNwFMD8/edit?usp=sharing

Reference Sheet: https://drive.google.com/file/d/1bTRKCwtGSo4MMd42bv7YGYgyEyDUOnBq/view?usp=sharing

Tree Class:

class Tree:
def __init__(self, entry, branches=()):

self.entry = entry
for branch in branches:

assert isinstance(branch, Tree)
self.branches = list(branches)

def __repr__(self):
if self.branches:

branches_str = ', ' + repr(self.branches)
else:

branches_str = ''
return 'Tree({0}{1})'.format(self.entry, branches_str)

def __str__(self):
def print_tree(t, indent=0):

tree_str = ' ' * indent + str(t.entry) + "\n"
for b in t.branches:

tree_str += print_tree(b, indent + 1)
return tree_str

return print_tree(self).rstrip()

def is_leaf(self):
return not self.branches

Linked List Class

class Link:
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest is not Link.empty:

rest_str = ', ' + repr(self.rest)
else:

rest_str = ''
return 'Link({0}{1})'.format(repr(self.first), rest_str)

(There is nothing to submit for question 1.)

Exam generated for <EMAILADDRESS> 4

2. (2.0 points) Conceptual Questions

(a) (1.0 pt) Explain how the Place Class in the Ants Vs. SomeBees Project models a Linked List data
structure.

Exam generated for <EMAILADDRESS> 5

(b) (1.0 pt) Suppose we have a Restaurant class with the following attributes and methods:

• __init__(self, restaurant_name, menu, available_tables): creates instance attributes restaurant_name,
menu, available_tables

• add_item(self, name): adds a new menu item to menu

• cook(self, order): prepares a single order for a customer

• clean_table(self): available_tables increments by 1

• update_price(self, menu_item): updates the price of an item on the menu

Using your knowledge of OOP and inheritance, create an example subclass that would inherit the
Restaurant class and explain how you would make use of inheritance. No code needs to be written for
this problem, a brief (2-4 sentences) description and justification is sufficient.

Exam generated for <EMAILADDRESS> 6

(c) (1.0 pt) Which data structure would you use to store a family’s heritage and why?

Exam generated for <EMAILADDRESS> 7

3. (7.0 points) What Made Python Print That?

Given the following lines of code and respective output, fill in the blanks to produce the desired result.

(a) Mystery

>>> def mystery(l, n, f):
if l is Link.empty:

return n == 0
return f(n, l.first) and mystery(l.rest, n // 10, f)

>>> l = ______________________________
>>> n = ______________________________
>>> l.first != l.rest.first and mystery(l, n, lambda x, y: x % 10 == y)
True

Fill in the blanks for the values of l and n such that the final expression evaluates to True.

i. (3.0 pt) Blank (l)

ii. (3.0 pt) Blank (n)

Exam generated for <EMAILADDRESS> 8

(b) Music Album

For this problem, we will be working with the MusicAlbum class, where each MusicAlbum instance has two
attributes, the album_name and a votes_per_song dictionary that has songs in the album as keys and
the number of votes per song as values.

Though the following MusicAlbum class is syntactically correct, there is a bug with the logic in the
most_popular_song_in_album method. The method is supposed to find the album with the most votes,
and though it sometimes works correctly, the logic bug makes it incorrect for some sequence of method
calls.

class MusicAlbum:
def __init__(self, album_name, songs):

self.album_name = album_name
self.votes_per_song = {}
for song in songs:

self.votes_per_song[song] = 0

def up_vote(self, song):
assert song in self.votes_per_song
self.votes_per_song[song] += 1

def down_vote(self, song):
assert song in self.votes_per_song
self.votes_per_song[song] -= 1

def most_popular_song_in_album(self):
most_popular_song = ""
most_popular_votes = 0
for song in self.votes_per_song:

if self.votes_per_song[song] >= most_popular_votes:
most_popular_song = song
most_popular_votes = self.votes_per_song[song]

return most_popular_song

Exam generated for <EMAILADDRESS> 9

i. (2.0 pt) Briefly describe what the issue in the most_popular_song_in_album method is (no more
than 30 words). Then come up with a sequence of method calls that would expose the bug in the
current code (no more than 5 lines).

ii. (2.0 pt) What is the runtime of the most_popular_song_in_album method in terms of N, which is
the number of songs in the self.votes_per_song dictionary?

2 O(1)

2 O(log(N))

2 O(N)

2 O(Nˆ2)

2 O(2ˆN)

Exam generated for <EMAILADDRESS> 10

4. (9.0 points) Let’s Go Grocery Shopping

Note: Please use: http://tutor.cs61a.org/ to check your environment diagram if needed!

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches the
environment diagram. You may want to fill in the blanks in a different order; feel free to answer the questions
in whatever order works for you.

The following environment diagram was generated by a program to completion:

(Click to Open Image)

calculateSale = _________________________________
(a)

def checkout(itemIndex):
itemName = ___________________________________

(b)
if itemName in saleItems:

originalPrice = groceryStore[itemIndex][1]

https://drive.google.com/file/d/1HbwfZ_k5Vlo-Zm6OmvHFF63k55yl-7qz/view?usp=sharing

Exam generated for <EMAILADDRESS> 11

newPrice = calculateSale(originalPrice, 0.5)
return newPrice

else:
return groceryStore[itemIndex][1]

groceryStore = [["pasta", 5], ["apple", 3], ["water", 1]]
saleItems = ["pasta", "apple"]
shoppingCart = ____________________________________

(c)
checkout(0)

Hint : Try solving blank c first before blanks a and b!

(a) (3.0 pt) Which of these could fill in blank (a)? Select one answer from below.

lambda price, discount: originalPrice * discount

lambda price, discount : price / discount

lambda price, discount : price + discount

lambda price, discount : price * discount

(b) (3.0 pt) Which of these could fill in blank (b)? Check all that apply.

2 groceryStore["pasta"][0]

2 groceryStore[itemIndex][0]

2 groceryStore[0][0]

2 groceryStore[-3][0]

(c) (3.0 pt) Which of these could fill in blank (c)? Select one answer from below.

[groceryStore[0]] + [groceryStore[1]]

[groceryStore[0][:]] + [groceryStore[1][:]]

groceryStore[0][:].append(groceryStore[1][:])

["pasta", 5, "apple", 3]

Exam generated for <EMAILADDRESS> 12

5. (9.0 points) Summer is finally here!

Note: Please use: http://tutor.cs61a.org/ to check your environment diagram if needed!

In this series of questions, you’ll fill in the blanks of the program that follows so that its execution matches the
environment diagram. You may want to fill in the blanks in a different order; feel free to answer the questions
in whatever order works for you.

The following environment diagram was generated by a program to completion:

(Click to Open Image)

a = 4
def summer(a):

if ______________:
(a)

return "Summertime!"
else:

return "Not yet :("

yay = _____________________________________
(b)

summer(________)
(c)

https://drive.google.com/file/d/1HrHfJinbE_d3PDPz7uEWl44QCKytojxF/view?usp=sharing

Exam generated for <EMAILADDRESS> 13

(a) (3.0 pt) Which of these could fill in blank (a)? Check all that apply.

2 yay(a) == 8

2 yay(a) >= 7

2 yay(a) < 10

2 yay(a) == 7

(b) (3.0 pt) Which of these could fill in blank (b)? Select one answer from below.

lambda b: (lambda c: a*2) (b)

lambda b: (lambda c : 8)

lambda b: (lambda c: 8) (a)

lambda b: (lambda c: b*2) (5)

(c) (3.0 pt) Fill in blank (c) and please write out the entire line of code below.

Exam generated for <EMAILADDRESS> 14

6. (7.0 points) Time’s up, let’s do this!

Create a class class Clock which keeps track of hours and minutes. The constructor takes in the hour and
minute that the clock should be set to initially. It also has the following two functions:

• advance(self):
– This function should advance the minutes by 1 minute
– If the minute is greater than or equal to 60 then minutes should be set to 0 and hour should be

advanced by 1 hour
– If hour is greater than 12 then hour should be set to 0

• sync(self):
– This function should synchronize all clocks ever created to have the same hour and minute to the

instance that this function is called on (see doctests for an example).

Also fill in the FastClock class which inherits from Clock. The advance method of the FastClock should
advance the minutes twice as much as a Clock. You cannot use more than the lines provided, but feel free to
use leave some lines blank.

class Clock:
"""
>>> regular = Clock(12, 59)
>>> fast = FastClock(12, 59) #Both clocks are initialized to 12 hours and 59 minutes
>>> print(regular.hour, regular.minute)
12 59
>>> print(fast.hour, fast.minute)
12 59
>>> regular.advance()
>>> fast.advance() #Fast clocks advance twice as fast
>>> print(regular.hour, regular.minute)
1 0
>>> print(fast.hour, fast.minute)
1 1
>>> another = Clock(6, 0) #initialize another clock to 6 hours and 0 minutes
>>> regular.sync() #Each clock is synchronized to regular’s time.
>>> print(regular.hour, regular.minute)
1 0
>>> print(another.hour, another.minute)
1 0
>>> print(fast.hour, fast.minute)
1 0
"""

def __init__(self, hour, minutes):
#make sure that hour and minutes are in range
assert hour <= 12 and hour > 0 and minutes < 60 and minutes > 0

def advance(self):

Exam generated for <EMAILADDRESS> 15

def sync(self):

class FastClock(Clock):

def advance(self):

(a) (3.0 pt) Fill in the class attributes for the Clock class.

class Clock:

Exam generated for <EMAILADDRESS> 16

(b) (3.0 pt) Complete the init function for the Clock class.

def __init__(self, hour, minutes):
make sure that hour and minutes are in range
assert hour <= 12 and hour > 0 and minutes < 60 and minutes > 0

Exam generated for <EMAILADDRESS> 17

(c) (3.0 pt) Complete the advance function for the Clock class.

def advance(self):

Exam generated for <EMAILADDRESS> 18

(d) (3.0 pt) Complete the sync function for the Clock class.

def sync(self):

Exam generated for <EMAILADDRESS> 19

(e) (3.0 pt) Fill in the class attributes for the FastClock class.

class FastClock(Clock):

Exam generated for <EMAILADDRESS> 20

(f) (3.0 pt) Complete the advance function for the FastClock class.

def advance(self):

Exam generated for <EMAILADDRESS> 21

7. (7.0 points) Coupons!

Fill in the blanks below to create a coupon tracker that has the functionality in the doctest below. Understanding
the doctests will be especially important for this problem.

coupon_tracker returns the function add_coupon which adds num_copies copies of the coupon represented by
the string code to the dictionary count.

Coupons can be added by calling add_coupon but when the string “finish” is passed in as code, add_coupon
returns another function that allows coupons to be acquired.

Coupons can be acquired by calling acquire_coupon but to successfully acquire a coupon, it must be in the
dictionary and have a positive number of copies. Each time a coupon is successfully acquired its number of
copies is decreased by 1.

def coupon_tracker():
"""
>>> coupon_adder = coupon_tracker()
>>> coupon_adder("X", 1)
>>> coupon_adder("Y", 1)
>>> coupon_adder("X", 1) # now there are 2 coupons with code "X"
>>> acquire = coupon_adder("finish")# Returns a function
>>> acquire("Z") # "Z" is not a coupon code
Failure.
>>> acquire("X") # After this, 1 coupon with code "X" remain
Success!
>>> acquire("Y")
Success!
>>> acquire("X") # After this, 0 coupons with code "X" remain
Success!
>>> acquire("X")
Failure.
"""
count = {}
def acquire_coupon(code):

if __:
__
print("Success!")

else:
print("Failure.")

def add_coupon(code, num_copies=0):
if code == "finish":

__
elif code in count:

__
else:

__
return add_coupon

Exam generated for <EMAILADDRESS> 22

(a) (7.0 pt) Fill in the blanks to complete the aquire_coupon function.

def acquire_coupon(code):
if __:

__
print("Success!")

else:
print("Failure.")

Exam generated for <EMAILADDRESS> 23

(b) (7.0 pt) Fill in the blanks to complete the add_coupon function.

def add_coupon(code, num_copies=0):
if code == "finish":

__
elif code in count:

__
else:

__
return add_coupon

Exam generated for <EMAILADDRESS> 24

8. (10.0 points) List of Links

Your friend is trying to write a function combine which takes in a list of linked lists. It concatenates each of the
linked lists in sequential order and returns the result. Mutating the linked lists is allowed, and the list that is
passed in is guaranteed to have at least one linked list. However, their code is buggy.

Describe 3 bugs with the code and the way to fix each of the bugs. After fixing each of the bugs, the code
should work as intended, and all of the doctests should output the expected output. You may only provide 3
bugs, if you provide more than 3 bugs then only the first 3 will be considered.

The doctests display the correct output for the function.

(a) def combine(lst):
"""
>>> lst1 = [Link(1), Link(2), Link(3)]
>>> combine(lst1)
Link(1, Link(2, Link(3)))
>>> lst2 = [Link(1,Link(4, Link(5))), Link(2), Link(3,Link(2))]
>>> combine(lst2)
Link(1, Link(4, Link(5, Link(2, Link(3, Link(2))))))
>>> lst3 = [Link(1)]
>>> combine(lst3)
Link(1)
"""

1. for i in range(len(lst)):
2. curr = lst[i]
3. while curr.rest:
4. curr = curr.rest
5. curr.rest = lst[i + 1].first
6. return curr

Exam generated for <EMAILADDRESS> 25

i. (6.0 pt) Describe the 3 bugs you found in the combine function and explain how to fix each bug.

Exam generated for <EMAILADDRESS> 26

ii. (6.0 pt) Write a working solution to the combine function.

def combine(lst):

Exam generated for <EMAILADDRESS> 27

(b) i. (4.0 pt) Write a working function for product_slice.

Exam generated for <EMAILADDRESS> 28

9. (10.0 points) Surprise Holiday

Paul is just about to submit his test linked list inputs for his cs88 assignment a couple hours before the due
date. He checks the calendar one last time, and gasps in horror - he forgot it was opposite day. According to
the laws of the universe, he must now submit all his linked lists BUT REVERSED. In this problem you will
help Paul write a function so that he can create new linked list inputs to submit in time.

Paul’s Linked Lists are not simple linked lists, they are nested, meaning that each linked list can have a first
value that is another linked list (and those can have linked lists as their first value and so on). It is your
responsibility to write a function nested_reverse that reverses nested linked list, and all nested lists within
the list, and returns a new list. Below is a pictorial example.

Hint: isInstance(Link.first, Link) checks whether or not Link.first is of type Link (meaning that it is
a linked list). We gave this part in the skeleton as a hint for the function.

Exam generated for <EMAILADDRESS> 29

(Click to Open Image)

def nested_reverse(link):
>>> nested_reverse(Link(Link(3, Link(4, Link(Link(5)))), Link(1, Link(2))))
Link(2, Link(1, Link(Link(Link(5), Link(4, Link(3)))))) #above example
>>> nested_reverse(Link(Link(1)))
>>> Link(Link(1)) #Nothing to reverse

new = Link.empty

https://drive.google.com/file/d/1q8vkjefD4H-5eyyDR6IUi-Yvxr4MtnRw/view?usp=sharing

Exam generated for <EMAILADDRESS> 30

while ________________________________:
if isinstance(link.first, Link):

else:

return ____________________________________

(a) (4.0 pt) Fill in the blanks to complete the nested_reverse function.

Exam generated for <EMAILADDRESS> 31

10. (10.0 points) Working in the IndusTREE

You have been recently hired by Company Z to help the company’s recruiting team! Company Z’s organizational
structure can be represented as a tree (see the image below) with each employee as a branch of their manager.
Note that it is possible for a manager to also be an employee, e.g. Kathy reports to Janice, and Rachel and
Monica report to Kathy! By this representation, the president is the root node!

(Click to Open Image)

https://drive.google.com/file/d/1KgRIcDKEk4ISqhDcxMknSLcIyUL5ps33/view?usp=sharing

Exam generated for <EMAILADDRESS> 32

(a) (4.0 pt) For your first task, you are asked to consider how many openings managers have on their teams
for potential new hires. A manager is anyone that has at least one person reporting to them. At company
Z, no manager should have more than k employees immediately reporting to them.

Given a tree t representing company Z and the number k representing the max number of employees
reporting to one manager, return the number of openings managers have on their teams for new hires
across the company. You can assume that in the current tree t, no manager is managing more than k
employees.

def num_openings(t, k):
"""
>>> finance = Tree("Janice", [Tree("Ross"), Tree("Kathy",[Tree("Rachel"),
... Tree("Monica", [Tree("Phoebe")])])])
>>> marketing = Tree("Mike", [Tree("Joe", [Tree("Chandler")])])
>>> operations = Tree("Richard")
>>> t = Tree("Gunther", [finance, marketing, operations])
>>> num_openings(t, 3)
8
"""
if __:

return __
else:

__
for __:

__
return __

Fill in the blanks to complete the num_openings function.

Exam generated for <EMAILADDRESS> 33

(b) (4.0 pt) For your second task, you have been told that there is an employee quitting the company because
they’ve found a new job opportunity.

Given a tree t representing company Z, modify the tree t to remove the employee that is leaving, moving
everyone who previously reported to that employee as now reporting to that employee’s previous manager.
For the sake of this problem, you can assume that there are no longer any constraints on how many
employees can report to a manager.

You can assume that the president (or the root node) will never leave the company.

(Click to Open Image)

def quit(t, employee):
"""
>>> finance = Tree("Janice", [Tree("Ross"), Tree("Kathy", [Tree("Rachel"),

https://drive.google.com/file/d/1pasw8Fy_bTVsQBzEOxRA-J-OYl5LOk3l/view?usp=sharing

Exam generated for <EMAILADDRESS> 34

... Tree("Monica", [Tree("Phoebe")])])])
>>> marketing = Tree("Mike", [Tree("Joe", [Tree("Chandler")])])
>>> operations = Tree("Richard")
>>> t = Tree("Gunther", [finance, marketing, operations])
>>> quit(t, "Kathy")
>>> print(t)
Gunther
Janice
Ross
Rachel
Monica
Phoebe

Mike
Joe
Chandler

Richard
"""

for ___:
if ___:

for ___:

Fill in the blanks to complete the quit function.

Exam generated for <EMAILADDRESS> 35

11. (10.0 points) Root Path Sums

The year is 2093 and the world has fallen into a post-apocalyptic nuclear winter. Michael Ball prime, a copy
of Michael Ball’s consciousness put into a robotic exoskeleton, needs to travel away from its shelter to charge
himself in nearby cities.

Michael Ball prime starts at the root of a tree, and travels along branches to each node, where he charges
himself according to the value (charge points) at that node. But beware, Michael Ball prime’s battery can only
hold n charge points, and will melt down if given anymore.

Write a procedure to find all paths that sum to exactly n charge points so that he becomes fully
charged. In other words, find all the paths in the tree (starting at the root) where the nodes
add up to n.

Exam generated for <EMAILADDRESS> 36

(a) (4.0 pt)

def root_path_sums(t, n):
"""
>>> t = Tree(1, [Tree(2, [Tree(1)]), Tree(3)])
>>> gen = root_path_sums(t, 4)
>>> next(gen)

[1, 2, 1]
>>> next(gen)

[1, 3]
>>> next(gen)

StopIteration error
>>> gen2 = root_path_sums(t, 15)
>>> next(gen2)

StopIteration error
"""

if t.label == n:
yield [t.label]

else:
for _____________________________________:

for ________ in root_path_sums(________, ________):
cur_path = [t.label] + ___________
yield ___________________________________

Fill in the blanks to complete the root_path_sums function.

Exam generated for <EMAILADDRESS> 37

12. (10.0 points) Post Final Dessert!

CREATE TABLE ice_cream AS
SELECT "vanilla" as flavor, "classic" as category UNION
SELECT "chocolate", "classic" UNION
SELECT "strawberry", "fruits" UNION
SELECT "mango", "fruits" UNION
SELECT "coffee", "fancy" UNION
SELECT "mint chocolate chip", "fancy";

CREATE TABLE staff AS
SELECT "Vandana" as name, "coffee" as favorite UNION
SELECT "Shreya", "strawberry" UNION
SELECT "Sophia", "mango" UNION
SELECT "Nick", "vanilla" UNION
SELECT "Lukas", "mango" UNION
SELECT "Tommy", "mint chocolate chip" UNION
SELECT "Kevin", "strawberry" UNION
SELECT "Minnie", "chocolate" UNION
SELECT "Matt", "vanilla" UNION
SELECT "Michael", "coffee" UNION
SELECT "Gerald", "mango";

Use the above tables to write queries below.

Exam generated for <EMAILADDRESS> 38

(a) (4.0 pt) Write a SELECT query which would output the names of people on staff who like ice cream in
the fruits category.

Output:
Shreya
Sophia
Lukas
Kevin
Gerald

Exam generated for <EMAILADDRESS> 39

(b) (4.0 pt)

Code Blocks
1.SELECT a.name ___
2.GROUP BY ice_cream_a.category ___
3.HAVING COUNT(a.name) + COUNT(b.name) = 2
4.ORDER BY __
5.FROM staff as a, staff as b ____________________________________
6.WHERE __

Write a SELECT query using the blocks of code given above to match everyone in the staff table in pairs if
they like ice cream in the classic category.

Not all the blocks may need to be used and they may be incomplete or incorrect. The blocks are also out of
order.

HINT: use the output to determine how to handle duplicates

Output:
Nick | Minnie
Nick | Matt
Minnie | Matt

Exam generated for <EMAILADDRESS> 40

(c) (4.0 pt) Write a SELECT query to output how much of each ice cream flavor is needed for everyone to
get their favorite flavor in decreasing popularity. If the popularity is tied, break ties alphabetically. Do not
include flavors where only one person likes the flavor.

HINT: To order by two columns, you can use a comma to separate the columns ex. ORDER BY col1, col2

Output:
Output:
mango | 3
coffee | 2
strawberry | 2
vanilla | 2

Exam generated for <EMAILADDRESS> 41

13. (10.0 points) Congratulations!

Woohoo! You are now officially done with CS88! Thanks so much for all of your hard work this semester. We
are incredibly proud of the effort you all put in and really enjoyed teaching you.

Congrats again! Best of luck on the rest of your finals :)

(There is nothing to submit for this question)

Exam generated for <EMAILADDRESS> 42

No more questions.

	Basic Directions
	References

