
CS 88 Sample Exam.
Spring 2021 Midterm

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

0.0.1 Basic Directions

• You have 2 hours, 120 minutes to complete the exam.
• You must not collaborate with anyone inside or outside of CS88.
• You may use the internet, the CS88 site and all it’s resources,
• However, you must not directly search for a question or post questions online.
• You may search for generic Python concepts.
• You may use your Terminal and Python Tutor.

– However, these are more strict about syntax! The exam is designed to be completed without these
tools, and using them may take up some time. Be mindful of how long you spend on each question.

• At this point you should have started your Zoom / screen recording. If something happens during the
exam, focus on the exam!

• Do not spend more than a few minutes dealing with proctoring.
• Your task is to show us how much you’ve learned, not to mess with technology.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your Berkeley email address?

Exam generated for <EMAILADDRESS> 3

1. Reference Links

Clarifications Document: https://docs.google.com/document/d/14FS5w-2k1VkmKhMbRw9jjjArQWaFLssa21JzOm6ALMA/edit?usp=sharing

Reference Sheet: https://drive.google.com/file/d/1bTRKCwtGSo4MMd42bv7YGYgyEyDUOnBq/view?usp=sharing

(There is nothing to submit for question 1.)

Exam generated for <EMAILADDRESS> 4

2. (2.0 points) Conceptual Questions

(a) (1.0 pt) What are the two different ways a function can be a higher order function?

Exam generated for <EMAILADDRESS> 5

(b) (1.0 pt) What is a recursive function and how do you avoid infinite recursion?

Exam generated for <EMAILADDRESS> 6

3. (7.0 points) What Made Python Print That?

Given the following lines of code and respective output, fill in the blanks to produce the desired result.

(a) >>> lst = [_______1_______]
>>> len(lst) == len(lst[1]) and (not lst[2]) and lst[0] * 2
10

Create a list lst such that the following expression evaluates to 10.

i. (3.0 pt) Blank (1)

Exam generated for <EMAILADDRESS> 7

(b) >>> def f1(m):
... def f2(lst):
... c = 0
... for i in range(len(lst) - 1):
... if lst[i+1] - lst[i] == m:
... c += 1
... return c
... return f2

>>> f1(___)(_____________)
4

Write an expression that would evaluate to 4 by using the above function and identifying what goes in the
blanks.

i. (2.0 pt)

Exam generated for <EMAILADDRESS> 8

(c) Assuming apple, orange, and pear are variables with integer values and salad is a dictionary, answer the
two following questions.

i. (1.0 pt) The statement below will Always/Sometimes/Never evaluate to a Truthy value if orange -
apple == 5.

>>> (pear > orange) or (apple or orange)

Always

Sometimes

Never

ii. (1.0 pt) The following expression will Always/Sometimes/Never evaluate to a Falsy value if the
variable pear exists at least once as a value in the dictionary salad.

>>> len(list(salad.values())) == len(list(salad.keys())) and pear in salad

Always

Sometimes

Never

Exam generated for <EMAILADDRESS> 9

4. (9.0 points) Reverse Environment Diagram

You are given the environment diagram for each question. Please fill in the blank lines so that the final
environment diagram will look exactly the same as the diagram given. All lines must be filled in and cannot be
left blank. There is potentially more than one way to do a given problem, but all blanks must be used.

Exam generated for <EMAILADDRESS> 10

(a) (3.0 pt)

environment diagram for 2.1

x = ______________
f1 = lambda ___ : [____for ___ in_____]
f1(x)

Copy and paste the skeleton code from above into the box below and fill in the blanks in the code so that
when it is executed, it will result in the given environment diagram.

Exam generated for <EMAILADDRESS> 11

Exam generated for <EMAILADDRESS> 12

environment diagram for 2.2

Exam generated for <EMAILADDRESS> 13

(b) (6.0 pt)

x, index = [1, 2, [3, 4], 5], 2

def f1(x):
def f2(_____):

return ____ * a
a = x.pop()
___[___][1] = a
return __________

z = f1(x[index:])
z(___)

Copy and paste the skeleton code from above into the box below and fill in the blanks in the code so that
when it is executed, it will result in the given environment diagram.

Exam generated for <EMAILADDRESS> 14

5. (7.0 points) The Ehrman Elevator

Exam generated for <EMAILADDRESS> 15

(a) i. (3.0 pt) One of the Unit 2 elevators has broken down yet again and all the code was lost! Fill in the
function elevator so that it returns a list order that represents the order of the floors from the list
requests that the elevator should visit. Each floor in the requests list is represented as an integer.

The next_floor function takes in the current floor cur_floor and a non-empty list requests that
contains the floors that the elevator still must go to. next_floor returns an integer representing the
next floor that the elevator should go to next and removes this integer from requests.

def elevator(cur_floor, requests, next_floor):
"""
>>> def smallest_to_largest(cur_floor, requests):
... smallest = min(requests)
... requests.remove(smallest)
... return smallest
>>> elevator(4, [55, 2, 1, 3], smallest_to_largest)
[1, 2, 3, 55]
>>> def descending_only(cur_floor, requests):
... largest = max(requests)
... while largest > cur_floor:
... requests.remove(largest)
... largest = max(requests)
... requests.remove(largest)
... return largest
>>> elevator(4, [55, 2, 1, 3], descending_only)
[3, 2, 1]
"""
order = []
while _______(a)_______:

cur_floor = _________________(b)_________________
_________________(c)_________________

return order

Write the completed elevator function below. You may not add new lines.

Exam generated for <EMAILADDRESS> 16

Exam generated for <EMAILADDRESS> 17

(b) i. (4.0 pt) Now implement the closest_floor function that can be passed into the elevator function
for the next_floor parameter. closest_floor returns the floor from the non-empty list requests
that is closest to the current floor of the elevator cur_floor. The floor that is returned should be
removed from requests within this function. Assume there are no ties for the closest floor.

For more information about the min function, you may refer to the documentation from Prolem 0.2 of
the maps project.

def closest_floor(cur_floor, requests):
"""
>>> requests = [1, 7]
>>> closest_floor(6, requests)
7
>>> requests
[1]
>>> closest_floor(7, requests)
1
>>> elevator(4, [6, 10, 5, 1, 30], closest_floor)
[5, 6, 10, 1, 30]
"""
floor = min(____(a)____, key=lambda x:____________(b)____________)
_________________________(d)_________________________
return floor

Write the completed closest_floor function below. You may not add new lines.

Exam generated for <EMAILADDRESS> 18

6. (7.0 points) Exaggerateeee

Implement the exaggerate function that returns a string that is identical to the input string phrase except
that every vowel in phrase is replaced by itself repeat times.

HINT: Recall that the operator * can be applied to strings (e.g. ‘ab’ * 2 = ‘abab’ and ‘c’ * 3 = ‘ccc’).

(a) (7.0 pt)

def exaggerate(phrase, vowels, repeat):
"""
>>> vowels = ['a', 'e', 'i', 'o', 'u']
>>> exaggerate('nice', vowels, 3)
'niiiceee'
>>> exaggerate("Woah so cool", vowels, 2)
'Wooaah soo cooool'
"""
if ____________:

return ___________
else:

cur = phrase[0]
if _______________:

cur = ______________
rest = exaggerate(________, ________, ________)
return _________________

Exam generated for <EMAILADDRESS> 19

7. (10.0 points) Debugging

Your friend wrote a function product_slice that takes in a start and stop value. It returns another function
slicer that takes in a list and returns the product of all the numbers from start(inclusive) to stop(exclusive).
However, it has exactly 3 distinct bugs.

(a) def product_slice(start, stop):
“””
>>> lst = [1,2,3,4,5]
>>> product_slice(1,4)(lst) # 2 * 3 * 4
24
>>> product_slice(0,4)(lst) # 1 * 2 * 3 * 4
24
>>> product_slice(0,5)(lst) # 1 * 2 * 3 * 4 * 5
120
“””
def slicer(lst):

output = 1
while start <= stop:

output = output * lst[start]
start += 1

return output
return slicer(lst)

i. (6.0 pt) Identify the 3 unique bugs and explain how to fix each bug. After fixing all the bugs, the
code should work as intended.

Exam generated for <EMAILADDRESS> 20

(b) i. (4.0 pt) Write a working function for product_slice.

Exam generated for <EMAILADDRESS> 21

8. (10.0 points) Shhh, I’m Booked

Your boss has asked you to implement an interface that allows users to donate and borrow books from local
libraries. You’ve started some work, and have already built out methods for two abstract data types representing
libraries and users.

A user can donate books to a library and borrow books from the library, but there are some constraints that
need to be enforced.

For a user to borrow a book from a library, they must not already have the book (if not, print “The user
already owns this book.”) and the library they are borrowing from must have that book available (if not, print
“The library does not have this book.”).

For a user to donate a book to a library, they must currently have that book (if not, print “The user does not
have this book.”) and the library should not already be at max capacity (if it is at maximum capacity, print
“The library is already at max capacity.”). The books are removed from the user and added to the library for
a donation and added to the user and removed from the library for a borrow.

Implement the borrow and donate functions below to implement the desired behavior. You may find reading
the doctests useful for understanding the behavior of these functions. Assume that the following functions of
the ADTs are already defined for you (their implementation is hidden).

Note: not all the lines need to be used.

Library ADT Functions
def make_library(capacity):

creates library ADT
def get_capacity(lib):

returns this library’s max capacity for books
def get_library_books(lib):

returns books currently in this library as a list
def add_book_for_lib(lib, book):

adds book to this library
def remove_book_for_lib(lib, book):

removes book from this library

User ADT Functions
def make_user(name, books):

creates user ADT
def get_user_books(user):

returns books this user currently has as a list
def add_book_for_user(user, book):

adds this book to user’s current books
def remove_book_for_user(user, book):

removes this book from this user’s current books

>>> doe = make_library(2)
>>> shelby = make_user("Shelby", ["The Firm", "Gone Girl", "The Client"])
>>> rachel = make_user("Rachel", ["The Kite Runner", "When Breath Becomes Air"])
>>> humbart = make_user("Humbart", ["The Firm", "The Book Thief"])

>>> donate(shelby, doe, "The Firm")
>>> donate(shelby, doe, “The Firm”)
This user does not have this book.
>>> borrow(humbart, doe, "The Firm")
This user already owns this book.

>>> donate(rachel, doe, "The Kite Runner")
>>> donate(shelby, doe, "Gone Girl")
This library is already at max capacity.

Exam generated for <EMAILADDRESS> 22

>>> borrow(shelby, doe, "The Alchemist")
This library does not have this book.

>>> borrow(humbart, doe, "The Kite Runner")
>>> borrow(humbart, doe, “The Kite Runner”)
The library does not have this book.
>>> donate(rachel, doe, "The Kite Runner")
This user does not have this book.

(a) i. (5.0 pt)

def borrow(user, lib, book):
user_books = get_user_books(user)
library_books = get_library_books(lib)

Implement the borrow function.

Exam generated for <EMAILADDRESS> 23

(b) i. (5.0 pt)

def donate(user, lib, book):
user_books = get_user_books(user)
library_books = get_library_books(lib)

Implement the donate function.

Exam generated for <EMAILADDRESS> 24

9. (10.0 points) Compress

Write a function compress that takes in a list of integers. It returns a compressed version of the integers in the
form of a list that contains two element lists where the first element is a number and the second element is the
amount of times that number appears consecutively.

def compress(lst):
“””
>>> lst = [1,1,1,0,0,1]
>>> compress(lst)
[[1, 3], [0, 2], [1, 1]]
[1, 3] represents that there are 3 consecutive 1s
[0, 2] following that, there are 2 consecutive 0s
[1, 1] finally there is 1 consecutive 1s
>>> lst2 = [1,0,1,0]
>>> compress(lst2)
[[1, 1], [0, 1], [1, 1], [0, 1]]
>>> lst3 = [1,1,1,1,1]
>>> compress(lst3)
[[1, 5]]
“””

Exam generated for <EMAILADDRESS> 25

(a) (10.0 pt) Write the compress function below.

Exam generated for <EMAILADDRESS> 26

No more questions.

	Basic Directions

