
CS 88 Computational Structures in Data Science
Spring 2022 final

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of CS88.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official CS88 Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu) CS88 In Person

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Online Exams: You may start you exam as soon as you are given the password.
• You may have a digitial version of the CS88 Reference Sheet, and the corrects doc, but no other

files. You notes should be handwritten
• Remember to view the Corrections Document on the board. (Online students, open the link)

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing
https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing
https://docs.google.com/document/d/1yAm765MySkwqMBaAwqXtsc9vPmA2aQJ3CDdKmBXkLDM/edit?usp=sharing

Exam generated for CS88 In Person 2

1. (10.0 points) Conceptual Questions

(a) (2.0 pt) Suppose the following code has been executed:

x = [1, 2, 3]
y = [4, 5]

Which 2 choices below will produce the same result?

■ x = x + y

2 x.append(y)

■ x.extend(y)

(b) (2.0 pt) Kevin is trying to implement a cake ADT and a party ADT:

Cake ADT
def make_cake(flavor, slices):

return [flavor, slices]

Party ADT
def make_party(guests, cake):

return {'guests': guests, 'cake': cake}

Kevin is trying to implement the finish_cake method in the party ADT, which finishes all of the cake slices in
the cake ADT. Does the following implementation violate any abstraction barriers?

def finish_cake(party):
cake = party['cake']
cake[1] = 0

 Yes, it violates the abstraction barrier for the cake ADT

Yes, it violates the abstraction barrier for the party ADT

No, it does not violate any abstraction barriers

(c) (2.0 pt) Kevin is trying to implement the get_flavor method in the cake ADT, which returns the flavor of the
cake ADT. Does the following implementation violate any abstraction barriers?

def get_flavor(cake):
return cake[0]

Yes, it violates the abstraction barrier for the cake ADT

Yes, it violates the abstraction barrier for the party ADT

 No, it does not violate any abstraction barriers

(d) (2.0 pt) In our linked list class, what is the BEST practice for determining whether we are at the end of a linked
list?

 Compare the current linked list node to Link.empty

Compare the current linked list node to ()

Find when the code causes an attribute error.

(e) (2.0 pt) All generators are iterators but not all iterators are generators.

 True

False

Exam generated for CS88 In Person 3

2. (10.0 points) Breakfast Time!

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the code runs
to completion with no errors. Some arrows have been removed from the diagram. You may wish to draw in those arrows,
but it is not required.

(a) (2.0 pt) What is the return value of the f1 frame?

func hot_drink

 func lambda

func tartine

(b) (2.0 pt) What is the parent frame of the hot_drink function in the f2 frame?

 Global

f1

(c) (2.0 pt) What is the parent of the lambda function in the f3 frame?

Global

f1

 f2

(d) (2.0 pt) What is the value of breakfast in the Global frame when the environment diagram is complete?

[‘toastjam’, ‘croissant’, 8]

(e) (2.0 pt) What is the value of plate in the Global frame when the environment diagram is complete?

10

Exam generated for CS88 In Person 4

3. (10.0 points) What Would Python Do (WWPD)

For each expression below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. The output may have multiple lines. If an error occurs, write “Error” (if any lines are displayed before the
error, include those in your output). If a function is returned, write “Function”.

f1 = lambda x: lambda y: (x * x) + (y * y)

def f2(lnk):
idx = 0
while lnk != Link.empty:

print(lnk.first[idx])
idx += 1
lnk = lnk.rest

class MessengerAccount():
total_accounts = 0
def __init__(self, owner):

self.owner = owner
self.notification = 0
self.inbox = []
MessengerAccount.total_accounts += 1

def send_msg(self, recipient, msg):
recipient.receive_msg(self.owner, msg)

def receive_msg(self, sender, msg):
self.notification += 1
self.inbox.append((sender, msg))

def read_msg(self):
for _ in range(len(self.inbox)):

msg = self.inbox.pop()
print("From " + msg[0] + ": " + msg[1])

(a) (2.0 pt) >>> f1(4)(3)

25

(b) (2.0 pt) >>> f2(Link("horse", Link("koala", Link("puppy", Link("eel")))))

h
o
p
Error

(c) (2.0 pt)

>>> chi = MessengerAccount("Chi")
>>> lukas = MessengerAccount("Lukas")
>>> lukas.total_accounts

2

Exam generated for CS88 In Person 5

(d) (2.0 pt)

>>> lukas.send_msg(chi, "Check out my Youtube channel!")
>>> lukas.send_msg(chi, "Like and sub (:")
>>> chi.read_msg()

From Lukas: Like and sub (:
From Lukas: Check out my Youtube channel!

(e) (2.0 pt)

>>> chi.send_msg(lukas, "Cool!")
>>> print(lukas.notification, chi.notification)

1 2

Exam generated for CS88 In Person 6

4. (6.0 points) Decider Mapping

Complete the function decider_map. decider_map takes in a list lst and a function decider. decider is a higher
order function that returns a function based on two inputs: a value and the index of that value in lst. For every
value in lst, determine what function needs to be applied to that value using decider, and return a new list where
all values in lst have the function chosen by decider applied to them.

def decider_map(lst, decider):
"""
>>> def decider(index, value):
... if index + value >= 0:
... return lambda x : x * 2
... else:
... return lambda x : -x
>>> decider_mapping([], decider)
[]
>>> decider_mapping([-1, -1], decider)
[1, -2]
>>> decider_mapping([1, -5, -2, 4], decider)
[2, 5, -4, 8]
"""
output = []
for i in ___________________:

decided_fn = ___________________
output.____________(_________________)

return output

(a) (6.0 pt)

def decider_map(lst, decider):
output = []
for i in range(len(lst)):

decided_fn = decider(i, lst[i])
output.append(decided_fn(lst[i]))
Alt: output.extend([decided_fn(lst[i])])

return output

Exam generated for CS88 In Person 7

5. (6.0 points) Cascading Numbers

Complete the function cascade, which takes in an integer base, a function fn, and a non-negative integer count.
cascade returns a sequence of numbers starting with base, fn(base), fn(fn(base)), . . . and so on, count number of
times and then continues the sequence in reverse back to base.

def cascade(base, fn, count):
"""
>>> cascade(5, lambda x: 2 * x, 0)
[]
>>> cascade(5, lambda x: 2 * x, 1)
[5]
>>> cascade(5, lambda x: 2 * x, 2)
[5, 10, 5]
>>> cascade(100, lambda x: x - 4, 3)
[100, 96, 92, 96, 100]
>>> cascade(4, lambda x: x - 4, 5)
[100, 96, 92, 88, 84, 88, 92, 96, 100]
"""
if count == 0:

return _______________________________
elif count == 1:

return _______________________________
else:

middle = cascade(____________________________)
return ______________________________

(a) (5.0 pt)

def cascade(base, fn, count):
if count == 0:

return []
elif count == 1:

return [base]
else:

middle = cascade(fn(base), fn, count - 1)
return [base] + middle + [base]

(b) With respect to the term count, what is the runtime of the function cascade?

Constant

Logarithmic

 Linear

Polynomial

Exponential

Exam generated for CS88 In Person 8

6. (4.0 points) Median Scores

Complete the function median_score which takes in a dictionary student_scores that maps each test score to the list
of students who earned that score, and returns the median score on the test. You may use the provided median function
which takes in an unordered list of integers and returns its median.

The median is the middle value in an odd-length ordered list (see the first doctest) or the average of the middle two
values in an even-length ordered list (see the second doctest).

def median(lst):
"""
>>> median([1, 6, 7])
6
>>> median([1, 2, 8, 6])
4.0
"""
Implementation not shown

def median_score(student_scores):
"""
>>> d = {3 : ["bob", "sally"], 4 : ["Arun", "Lars", "Ken"]}
>>> median_score(d)
4
>>> d = {3 : ["bob", "sally"], 4 : ["Arun", "Lars"]}
>>> median_score(d)
3.5
"""
all_scores = []
for score in student_scores:

students = student_scores[score]
for __:

return __

(a) (4.0 pt)

def median_score(student_scores):
all_scores = []
for score in student_scores:

students = student_scores[score]
for _ in range(len(students)):

all_scores.append(score)
return median(all_scores)

Exam generated for CS88 In Person 9

7. (8.0 points) Wordle

You are writing a clone of the hit game Wordle!

Implement the check_correctness function which takes in a linked list, guess (with each element as an individual
letter) and a string, correct_word. The function should output a linked list with one of the following colors at each of
the corresponding positions in guess:

• 'green': If letter in guess is both in the correct_word and in the correct position
• 'yellow': If letter in guess is in the correct_word but not in the correct position
• 'black': If letter in guess is not in correct_word

Both guess and correct_word will always be the same length, and you can assume they have unique and lowercase
letters.

Note: You can use indexing ([]) and the in operator on strings, just like lists! (But you cannot use them on a Link
object.)

def check_correctness(guess, correct_word):
'''
>>> guess = Link('c', Link('r', Link('a', Link('n', Link('e')))))
>>> correct_word = "train"
>>> check_correctness(guess, correct_word)
Link('black', Link('green', Link('green', Link('yellow', Link('black')))))
'''
def helper(guess, correct_word, i):

if guess is Link.empty:
return ________________________

rest = ___________________________________
if ______________________:

return Link(_______________, rest)
elif ______________________:

return Link(_______________, rest)
else:

return Link(_______________, rest)
return helper(guess, correct_word, 0)

(a) (8.0 pt)

def check_correctness(guess, correct_word):
def helper(guess, correct_word, i):

if guess is Link.empty:
return guess

rest = helper(guess.rest, correct_word, i+1)
if guess.first == correct_word[i]:

return Link(’green’, rest)
elif guess.first in correct_word:

return Link(’yellow’, rest)
else:

return Link(’black’, rest)
return helper(guess, correct_word, 0)

Exam generated for CS88 In Person 10

8. (6.0 points) Maze

You are simulating a game where a player is walking through a maze by choosing right, 'R', or left, 'L', repeatedly in a
sequence.

Complete the generator checker, which takes in correct_gen, a generator that yields the next step the player should
take, and guess_gen, a generator that yields the next step the player CHOOSES to take.

checker simulates the game by yielding 'Ok' if the player chooses the correct next step and 'Lose' otherwise. If the
player completes the maze correctly, checker should yield 'Maze Complete'.

Assume that correct_gen and guess_gen will yield the same number of elements.

def checker(correct_gen, guess_gen):
"""
>>> def path_gen(lst):
... for el in lst:
... yield el
...
>>> correct_path = path_gen(['R', 'L', 'R'])
>>> guess_path = path_gen(['R', 'R', 'R'])
>>> checker_gen = checker(correct_path, guess_path) # Simulate Losing
>>> next(checker_gen)
'Ok'
>>> next(checker_gen)
'Lose'
>>> checker_gen = checker(path_gen(['R', 'L']), path_gen(['R', 'L'])) # Simulate Winning
>>> next(checker_gen)
'Ok'
>>> next(checker_gen)
'Ok'
>>> next(checker_gen)
'Maze Complete'
"""
while True:

try:
correct_step = __________________________
guess_step = __________________________
if correct_step != guess_step:

return

else:

except StopIteration:

Exam generated for CS88 In Person 11

(a) (6.0 pt)

def checker(correct_gen, guess_gen):
while True:

try:
correct_step = next(correct_gen)
guess_step = next(guess_gen)
if correct_step != guess_step:

yield ’Lose’
return

else:
yield ’Ok’

except StopIteration:
yield ’Maze Complete’

Exam generated for CS88 In Person 12

9. (10.0 points) Color Schemes

You will be implementing a system for creating color palettes, using two classes Color and Color Palette.

To start, you will finish the class Color. The Color class has three instance attributes, r, g, and b, which stores the
RGB values of the color. The RGB color model is a common way to encode colors.

class Color:
def __init__(self, red, green, blue):

self.r = red
self.g = green
self.b = blue

def dissimilarity(self, other):
r_diff = __
g_diff = __
b_diff = __

def __repr__(self): #you can ignore this!!!
return f"Color({self.r}, {self.g}, {self.b})"

(a) (3.0 pt) All that’s left is to implement the method dissimilarity, which computes the dissimilarity between two
colors. Dissimilarity is equal to the sum of the absolute differences between the r, g, and b attributes of the two
colors.

def dissimilarity(self, other):
"""
>>> blue = Color(0, 0, 100)
>>> green = Color(0, 100, 0)
>>> blue.dissimilarity(green) # abs(0-0) + abs(0-100) + abs(100-0)
200
"""
r_diff = __
g_diff = __
b_diff = __

def dissimilarity(self, other):
r_diff = abs(self.r - other.r)
g_diff = abs(self.g - other.g)
b_diff = abs(self.b - other.b)
return r_diff + g_diff + b_diff

Exam generated for CS88 In Person 13

(b) (4.0 pt) Now, we’re ready to work on the ColorPalette class. A instance of the ColorPalette class has two
attributes: 1. colors: a list of instances of the Color class 2. threshold: a int indicating how similar two colors
can be

You will be completing the add_to_palette method.

class ColorPalette:
def __init__(self, color_lst, threshold):

self.threshold = threshold
self.colors = []
for c in color_lst:

self.add_to_palette(c)

def add_to_palette(self, color):
for c in self.colors:

if ___:

Implement the method add_to_palette which attempts to add the color color to a ColorPalette.

We do not want to add a Color to a ColorPalette if its dissimilarity to any Color in the colors list is less than the
threshold instance attribute. You may not need all the lines of code provided. Assume that the Color class is
implemented correctly.

If the Color is too similar to the colors in the palette, print “Too Similar!” (see doctests).

def add_to_palette(self, color):
"""
>>> blue = Color(0, 0, 100)
>>> the_blues = ColorPalette([blue], 5)
>>> the_blues.colors
[Color(0, 0, 100)]
>>> blue_again = Color(0, 0, 97)
>>> the_blues.add_to_palette(blue_again)
Too similar!
>>> the_blues.colors
[Color(0, 0, 100)]
>>> green = Color(0, 100, 0)
>>> the_blues.add_to_palette(green)
>>> the_blues.colors
[Color(0, 0, 100), Color(0, 100, 0)]
"""
for c in self.colors:

if ___:

def add_to_palette(self, color):
for c in self.colors:

if color.dissimilarity(c) < self.threshold:
print("Too similar!")
return

self.colors += [color]

Exam generated for CS88 In Person 14

(c) (3.0 pt) You decide to implement a color palette called TriColor.

This palette accepts two colors, c1 and c2, and an int threshold as input. It computes a third color which is
the average of the two input colors. These three colors should all form one color palette, which has a similarity
threshold equal to threshold.

Implement the constructor for TriColor. You may not need all the lines of code provided. Assume that the Color
and ColorPalette classes are implemented correctly.

class TriColor(___________________):
def __init__(self, c1, c2, threshold):

"""
>>> blue = Color(0.0, 0.0, 100.0)
>>> green = Color(0.0, 100.0, 0.0)
>>> blue_green = TriColor(blue, green, 10)
>>> blue_green.colors
[Color(0.0, 0.0, 100.0), Color(0.0, 100.0, 0.0), Color(0.0, 50.0, 50.0)]
>>> the_blues = TriColor(blue, blue, 10)
Too similar!
Too similar!
>>> the_blues.colors
[Color(0.0, 0.0, 100.0)]
"""
avg_r = (c1.r + c2.r)/2
avg_g = (c1.g + c2.g)/2
avg_b = (c1.b + c2.b)/2

class TriColor(ColorPalette):
def __init__(self, c1, c2, threshold):

avg_r = (c1.r + c2.r)/2
avg_g = (c1.g + c2.g)/2
avg_b = (c1.b + c2.b)/2
avg_color = Color(avg_r, avg_g, avg_b)
super().__init__([c1, c2, avg_color], threshold)

Exam generated for CS88 In Person 15

10. (6.0 points) Two Tree

A Two Tree is a Tree where every node has 1. A value of either 0 or 1. 2. At most two children.

An example of a valid Two Tree is Tree(0, [Tree(1), Tree(1)]). Examples of invalid Two Trees include Tree(2)
and Tree(1, [Tree(0), Tree(0), Tree(1)]).

The (possibly buggy!) add_nums function should return the sum of all the values in the input t, which is a Two Tree.
For each (a)-(d), write any valid Two Tree t that makes the statement true. If no such valid Two Tree exists, write
“Impossible”.

def add_nums(t):
count = t.value
for b in t.branches:

count += b.value
return count

(a) (1.5 pt) add_nums(t) is supposed to return 2, and does return 2.

Tree(1, [Tree(1)])

(b) (1.5 pt) add_nums(t) is supposed to return 3, and does return 3.

Tree(1, [Tree(1), Tree(1)])

(c) (1.5 pt) add_nums(t) is supposed to return 3, and does NOT return 3.

Tree(1, [Tree(0, [Tree(1)]), Tree(1)])

(d) (1.5 pt) add_nums(t) is supposed to return 4, and does return 4.

Impossible!

Exam generated for CS88 In Person 16

11. (6.0 points) SorcerTree

CS 88 is getting popular as a course, and more and more people are recommending it to their friends! We are representing
these recommendations as a tree of students (represented as strings), where the branches of a student s are the students
that s recommended to take the course. For example, in the below tree, Harry recommended Ron, Ginny, and Draco to
take the class.

Given a tree t and a list star_students, return a list of two element tuples, where each tuple has a student from
star_students and the person that recommended them to take CS 88. Assume that every student in the star_students
list appears in the tree t once.

def find_recommenders(t, star_students):
"""
>>> t = Tree("harry", [Tree("ron", [Tree("luna"), Tree("molly")]),

Tree("ginny", [Tree("snape")]), Tree("draco")])
>>> find_recommenders(t, ["ginny"])
[('ginny', 'harry')]
>>> find_recommenders(t, ["ron", "molly", "snape"])
[('ron', 'harry'), ('molly', 'ron'), ('snape', 'ginny')]
>>> find_recommenders(t, ["harry", "luna"])
[('luna', 'ron')] # No one recommended harry to take the class, as harry is the root node
"""
result = []
for b in t.branches:

if __________________________________:
result += __________________________________

result += __________________________________
return result

(a) (6.0 pt)

def find_recommenders(t, star_students):
result = []
for b in t.branches:

if b.value in star_students:
result += [(b.value, t.value)]

result += find_recommenders(b, star_students)
return result

Exam generated for CS88 In Person 17

12. (10.0 points) SQLiving Spaces

Answer the following questions given tables of the following form.

student

name grade res_hall

Sebastian freshman Triumph

Karim sophomore Triumph

Jessica sophomore Oasis

Hetal junior Oasis

Amit junior Empire

Tommy junior Dynamic

Lukas junior Empire

Anjali junior Millenium

Matt junior Millenium

Shreya senior Oasis

Kevin senior Millenium

Chi senior Dynamic

Minnie senior Dynamic

building

res_hall complex year

Triumph Unit A 1980

Empire Unit A 1976

Millenium Unit B 1983

Oasis Unit C 1964

Dynamic Unit B 1976

Pinnacle Unit A 1971

(a) (3.0 pt) Write a SQL query that retrieves the name and res_hall of all sophomore students. The expected
output is given below.

name res_hall

Karim Triumph

Jessica Oasis

SELECT name, res_hall
FROM student
WHERE grade = ’sophomore’

Exam generated for CS88 In Person 18

(b) (3.0 pt) Write a SQL query that retrieves all rows corresponding to the buildings in Unit A in alphabetical
order by building name. The expected output is given below.

res_hall complex year

Empire Unit A 1976

Pinnacle Unit A 1971

Triumph Unit A 1980

SELECT * FROM building
WHERE complex = ’Unit A’
ORDER BY res_hall

(c) (4.0 pt) Write a SQL query that retrieves the total number of junior students who live in each complex as total.
The expected output is given below.

complex total

Unit A 2

Unit B 3

Unit C 1

SELECT complex, COUNT(*) AS total
FROM student AS s, building AS b
WHERE s.res_hall = b.res_hall
AND grade = ’junior’
GROUP BY complex

Exam generated for CS88 In Person 19

No more questions.

