
DS C88C Computational Structures in Data Science
Spring 2023 final

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of C88C.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official C88C Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu) _______________________________@berkeley.edu

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You must include all answers within the boxes.
• Online Exams: You may start your exam as soon as you are given the password.

– You may have a digital version of the C88C Reference Sheet, but no other files.
– Exam Clarifications: https://tinyurl.com/clarifications-sp23
– Reference Sheet: https://tinyurl.com/mt-reference

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing

Exam generated for _______________________________@berkeley.edu 2

1. (5.0 points) ConceptMan

ConceptMan is a superhero who answers multiple choice questions on the Spring 2023 CS 88 Final. Help ConceptMan
answer these multiple choice questions on the Spring 2023 CS 88 Final!

(a) (1.0 pt)

d = {1:2}
try:

print(d[1])
except NameError as e:

print('nyaooooooooooooooo')
except KeyError as e:

print('donkey')
except ZeroDivisionError as e:

print('Wowzas!')

Wowzas!

donkey

nyaooooooooooooooo

 2

None

(b) (1.0 pt)

d = {1:2}
try:

print(d[2])
except NameError as e:

print('nyaooooooooooooooo')
except KeyError as e:

print('donkey')
except ZeroDivisionError as e:

print('Wowzas!')

 donkey

nyaooooooooooooooo

Wowzas!

None

2

Exam generated for _______________________________@berkeley.edu 3

(c) (1.0 pt)

d = {1:2}
try:

print(d[1/0])
except NameError as e:

print('nyaooooooooooooooo')
except KeyError as e:

print('donkey')
except ZeroDivisionError as e:

print('Wowzas!')

None

2

donkey

 Wowzas!

nyaooooooooooooooo

(d) (1.0 pt) Consider this implementation of a Link from lecture. No other methods are implemented.

class Link:
empty = ()
def __init__(self, first, rest=empty):

self.first = first
self.rest = rest

Does the following code follow the programming principles we learned in class?

x = Link(1, Link(2))
x.rest.rest = 3

 No, because this would result in an invalid Link object.

Yes, because the code is syntactically correct.

Yes, because the code uses the attributes of the class.

No, because while directly setting the data value of the first Link is acceptable, doing so for later Links requires
a setter method.

(e) (1.0 pt) Which SQL keyword is used to filter the groups created by GROUP BY?

WITH

 HAVING

SELECT

WHERE

Exam generated for _______________________________@berkeley.edu 4

2. (10.0 points) Psych!

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the code runs
to completion. Boxes with the same label will have the same value.

(a) (2.0 pt) What is the value of the variable maturity in frame f1? (box a)

0

Exam generated for _______________________________@berkeley.edu 5

(b) (2.0 pt) What is value of bend at the end of the environment diagram (box d)?

["alot", "maturity"]

"alot"

 "obscurity"

"proof"

"any"

"wrong"

"line"

(c) (2.0 pt) What is value of i in frame 2 at the end of the environment diagram (box b)?

"proof"

 "obscurity"

"any"

"line"

"alot"

["alot", "maturity"]

"wrong"

(d) (2.0 pt) What function is being called in the f3 frame? (box c)

func know [parent = f2]

func song [parent = global]

func lambda <line 8> [parent = f2]

 func lambda <line 8> [parent = f1]

func know [parent = f1]

(e) (2.0 pt) What is value of psych at the end of the environment diagram (box e)?

5

Exam generated for _______________________________@berkeley.edu 6

3. (8.0 points) What Would Python Do (WWPD)

For each expression below, select the output displayed by the interactive Python interpreter when the expression is
evaluated. If an error occurs, select “Error”.

>>> func = lambda x, y: add(mystery(x), y)

>>> def add(x, y):
... return x + y

>>> def cond(x):
... return x < (lambda y: y / x)(18)

>>> def mystery(x):
... arr = [1, 4, 5, 2, 3]
... return (lambda x: (arr[-1] * x))(x)
... x += 1

(a) (1.5 pt)

>>> mystery(0)

Error

12

6

 0

(b) (1.5 pt)

>>> mystery(2)

 6

0

12

Error

(c) (1.5 pt)

>>> cond(0)

True

 Error

False

(d) (1.5 pt)

>>> cond(9)

Error

True

 False

Exam generated for _______________________________@berkeley.edu 7

(e) (2.0 pt)

>>> func(4, -2)

18

Error

14

 10

Exam generated for _______________________________@berkeley.edu 8

4. (4.0 points) Bugging Out

We are writing the function cumulative_link which accepts a linked list lnk as input and mutates it such that each
node is the sum of all nodes to the right in the old lnk. An example of the desired behavior is below:

>>> lnk = Link(1, Link(2, Link(3)))
>>> cumulative_lnk(lnk)
>>> lnk
Link(6, Link(5, Link(3)))

Below is a buggy implementation of cumulative_link. Answer the following questions with this implementation in
mind. Hint: It can be helpful to draw out the linked lists to follow the execution of the code. The inputs are small
enough that this should be possible!

1. def cumulative_link(lnk):
2. if lnk.rest is Link.empty:
3. return
4. else:
5. cumulative_link(lnk.rest)
6. lnk.first = 1 + lnk.rest.first

(a) (1.0 pt) Select the value of lnk such that buggy cumulative_link(lnk) mutates lnk correctly and does not
error.

 lnk = Link(1, Link(1, Link(5)))

lnk = Link("s", Link("u", Link("m")))

lnk = Link("h", Link("i", Link(88)))

(b) (1.0 pt) Select the value of lnk such that buggy cumulative_link(lnk) causes an error.

lnk = Link("h", Link("i", Link(88)))

lnk = Link(1, Link(1, Link(5)))

 lnk = Link("s", Link("u", Link("m")))

(c) (1.0 pt) Select the value of lnk such that buggy cumulative_link(lnk) mutates lnk incorrectly and does not
error.

lnk = Link(1, Link(1, Link(5)))

lnk = Link("s", Link("u", Link("m")))

 lnk = Link("h", Link("i", Link(88)))

(d) (2.0 pt) The bug in this function can be fixed by modifying one line of code. Indicate which line you are changing,
and how you will replace it.

Line 6, lnk.first = lnk.first + lnk.rest.first

Exam generated for _______________________________@berkeley.edu 9

5. (7.0 points) Multi-Caller

(a) (7.0 pt) You’re writing a function for people who are too lazy to call functions themselves. Write the multi_caller
function, which will take in functions (a list of two-argument functions) and return a function apply. This apply
function takes in arguments (a list of two-element lists) and returns a new list containing the outputs from calling
each function in functions on its respective arguments in arguments.

The first and second arguments for the function at functions[i] will be the first and second elements of the list
at arguments[i] respectively. You can assume that functions and arguments will always have the same length.

def multi_caller(functions):
"""
>>> add = lambda a, b: a + b
>>> sub = lambda a, b: a - b
>>> mul = lambda a, b: a * b
>>> functions = [add, sub, mul]
>>> apply = multi_caller(functions)
>>> arguments = [[2, 5], [10, 5], [11, 8]]
>>> apply(arguments) # [add(2,5), sub(10, 5), mul(11, 8)]
[7, 5, 88]
"""
def apply(arguments):

result = ______________________________
for i in range(______________________________)

func = ______________________________
args = ______________________________
output = ______________________________

return ______________________________
return ______________________________

def multi_caller(functions):
def apply(arguments):

result = []
for i in range(len(arguments)):

func = functions[i]
args = arguments[i]
output = func(args[0], args[1])
result.append(output)

return result
return apply

Exam generated for _______________________________@berkeley.edu 10

6. (6.0 points) Product of List

(a) (6.0 pt) Given a nested list, return the product of all the elements using recursion. For an empty list, the product
returned should be 1.

Hint : The isinstance function will be useful!

To review, isinstance takes in two arguments: an instance and the name of a class. isinstance returns True if
the first argument is an instance of the class of the second argument, and False otherwise. Lists belong to the
list class.

def nested_product(lst):
"""
>>> lst = [2, 3, [4, 1, [5], 1]]
>>> nested_product(lst)
120 # 2 * 3 * 4 * 1 * 5 * 1

>>> lst2 = [1, [2, [3]]]
>>> nested_product(lst2)
6

>>> nested_product([])
1
"""
if not lst:

return ______________________________
if ______________________________:

return ___________________ * ____________________
else:

return ___________________ * ____________________

def nested_product(lst):
if not lst:

return 1
if isinstance(lst[0], list):

return nested_product(lst[0]) * nested_product(lst[1:])
else:

return lst[0] * nested_product(lst[1:])

Exam generated for _______________________________@berkeley.edu 11

7. (4.0 points) Test Distribution

(a) (4.0 pt) Given a list of test scores that range from 0 to 100, create a function that returns a dictionary distribution
that contains bins of test scores in 10s, and the percentage of scores in those bins. Your dictionary should have
keys 0, 10, 20, 30, . . . , 90, each corresponding to one bin in the distributionogram.

Bin 0 should hold the percentage of test scores that were between 0-10 (excluding 10), bin 10 should hold the
percentage of test scores that were between 10-20 (excluding 20), etc.

You do not need to include bins with no test scores, and order of bins do not matter.

def dist_dictionary(scores):
"""
>>> test_scores = [11.2, 13.4, 6, 78.5, 92.6]
11.2 and 13.4 belong in the 10 bin as they fall between 10-20 (excluding 20)
6 belongs in the 0 bin as it falls between 0-10 (excluding 10)
78.5 belongs in the 70 bin as it falls between 70-80 (excluding 80)
92.5 belongs in the 100 bin as it falls between 90-100 (excluding 100)

>>> dist = dist_dictionary(test_scores)
>>> dist
{0:0.2, 10:0.4, 70:0.2, 90:0.2}
"""
distribution = {}
for score in scores: # getting counts of scores

bin = ______________________________
if bin in distribution:

else:

for bin in distribution: # making every value into a decimal value

return distribution

def dist_dictionary(scores):
distribution =
for score in scores:

bin = (score // 10) * 10
if bin in distribution:

distribution[bin] += 1
else:

distribution[bin] = 1
for bin in distribution:

distribution[bin] = distribution[bin] / len(scores)
return distribution

Exam generated for _______________________________@berkeley.edu 12

8. (5.0 points) Cherry Tree Blossom

In memory of the full blossom of the cherry trees on campus, you decided to write a function that simulates this process.

A cherry tree is a Tree instance where each node contains an integer value.

When a tree blossoms, start from the top of the tree and increment every node’s value by its parent’s value. The root
node of the tree will not be incremented.

Implement cherry_tree_blossom, which takes in a Tree instance and makes it blossom by mutating the tree given.

The doctests are depicted here:

Note: The two bottom lines given are meant to be indented so that they are inside the for loop. You cannot use more
lines than given.

def cherry_tree_blossom(t):
"""
>>> t = Tree(1, [Tree(1, [Tree(1), Tree(1)]), Tree(1, [Tree(1), Tree(1)])])
>>> print(t)
1

1
1
1

1
1
1

>>> cherry_tree_blossom(t)
>>> print(t)
1

2
3
3

2
3
3

>>> cherry_tree_blossom(t)
>>> print(t)
1

3
6
6

3
6
6

"""
for ___:

Exam generated for _______________________________@berkeley.edu 13

(a) (4.0 pt)

300.0px0.75
def cherry_tree_blossom(t):

"""
»> t = Tree(1, [Tree(1, [Tree(1), Tree(1)]), Tree(1, [Tree(1),

Tree(1)])])
»> print(t)
1

1
1
1

1
1
1

»> cherry_tree_blossom(t)
»> print(t)
1

2
3
3

2
3
3

»> cherry_tree_blossom(t)
»> print(t)
1

3
6
6

3
6
6

"""
for b in t.branches:

b.value += t.value
cherry_tree_blossom(b)

Exam generated for _______________________________@berkeley.edu 14

9. (8.0 points) Out of Order

(a) (8.0 pt) You are very picky about your linked lists and need them to be sorted. Given a linked list lnk containing
integers, write the function out_of_order that returns the number that breaks the sorted property in lnk. In
addition, the function should mutate lnk to skip over the value. If lnk is already sorted, return None without
mutating lnk.

In order for lnk to follow the sorted property, all of its values must be larger than or equal to the value before it.

You can assume that lnk will have a maximum of one value that breaks the sorted property. Further, you can
assume that after you remove the unsorted value, lnk will be sorted.

def out_of_order(lnk):
"""
>>> lnk1 = Link(1, Link(2, Link(2, Link(0))))
>>> out_of_order(lnk1)
0
>>> lnk1
Link(1, Link(2, Link(2)))
>>> lnk2 = Link(5, Link(3, Link(7, Link(9))))
>>> out_of_order(lnk2)
3
>>> lnk2
Link(5, Link(7, Link(9)))
>>> lnk3 = Link(6, Link(7, Link(10, Link(11))))
>>> out_of_order(lnk3) # lnk is already sorted, returns None
>>> lnk3 # Not mutated
Link(6, Link(7, Link(10, Link(11))))
"""
if __:

return __
if __:

unsorted_value = __
__ = __
return __

return __

def out_of_order(lnk):
if lnk is Link.empty or lnk.rest is Link.empty:

return None
if lnk.first > lnk.rest.first :

unsorted_value = lnk.rest.first
lnk.rest = lnk.rest.rest
return unsorted_value

return out_of_order(lnk.rest)

Exam generated for _______________________________@berkeley.edu 15

10. (15.0 points) Final Countdown

To make writing exams easier, C88C has decided to use Object-Oriented Programming.

Specifically, we have defined a Question class. Unfortunately, the class is incomplete! Each Question instance should
have the following instance attributes:

• self.text: Contains the question text

• self.solution: Contains the question solution

• self.points: Contains the number of points the question is worth

• self.serial_no: The unique question serial number

class Question:
serial_no = 1000
def __init__(self, text, solution, points):

"""
>>> q1 = Question("True or False?", "False", 2)
>>> q1.serial_no
1000
>>> q2 = Question("True or False?", "True", 1)
>>> q2.serial_no
1001
>>> q1.grade("True")
0
>>> q1.grade("False")
2
"""
self.text = text
self.solution = solution
self.points = points
self.serial_no = ____________________________

def grade(self, student_sol):
if ______________________________:

return ______________________________
else:

return 0

(a) (2.0 pt) To ensure each Question instance gets a unique serial number, we have a class attribute Question.serial_no
which stores the serial number for the next instance to be created.

Complete the constructor of the Question class to populate the instance attribute serial_no. Remember to
update the class attribute serial_no so that subsequent calls to the constructor do not use the same serial number.

class Question:
serial_no = 1000
def __init__(self, text, solution, points):

self.text = text
self.solution = solution
self.points = points
self.serial_no = Question.serial_no
Question.serial_no += 1

Exam generated for _______________________________@berkeley.edu 16

(b) (2.0 pt) In addition to storing question information, we want to be able to grade questions. Implement the method
grade which accepts student_sol as an argument. If student_sol is equal to the question’s solution, return
the points that the question is worth. Else, return 0.

def grade(self, student_sol):
if self.solution == student_sol:

return self.points
else:

return 0

Exam generated for _______________________________@berkeley.edu 17

(c) (2.0 pt) Now that we have a Question class, let’s put some questions together into an Exam class!

class Exam:
def __init__(self, questions, submissions):

"""
>>> q1 = Question("True or False?", "False", 2)
>>> q2 = Question("True or False?", "True", 1)
>>> final = Exam([q1, q2], [{1000: "False", 1001: "True"}, {1000: "False", 1001: "False"}])
>>> final.scores # final.scores is empty initially
[]
>>> final.total_score()
3
>>> final.grade_submission(final.submissions[0])
3
>>> final.scores # calling grade_submission does not modify final.scores
[]
>>> final.grade_all()
>>> final.scores # calling grade_all modifies final.scores
[3, 2]
"""
self.questions = questions
self.submissions = submissions
self.scores = []

def total_score(self):
return sum([______________ for q in ___________________________________])

def grade_submission(self, submission):
score = ___
for ___:

score += ______________________.grade(__________________________)
return score

def grade_all(self):
for ___:

_________________________.append(_________________________________)

Instances of the Exam class have the following instance attributes:

• self.questions: A list of Question instances that make up the exam

• self.submissions: A list of student submissions. Each submission is a dictionary mapping a question serial
number to the student’s answer.

• self.scores: A list containing student submission scores

Implement the method total_score which returns the total points that can be scored on the exam. The total
score is equal to the sum of the points values of all questions on the Exam.

def total_score(self):
return sum([q.points for q in self.questions])

Exam generated for _______________________________@berkeley.edu 18

(d) (3.0 pt) Implement the method grade_submission which take in a student’s submission and returns the score
the student scored. As mentioned previously, each submission is a dictionary mapping a question serial number to
the student’s answer. Each submission will contain all questions on the exam.

Each student’s overall score is equal to the sum of their question scores. Recall: to get a student’s score on a
question we can use the .grade() method.

def grade_submission(self, submission):
score = 0
for q in self.questions:

score += q.grade(submission[q.serial_no])
return score

(e) (3.0 pt) Implement the method grade_all which adds the overall scores of all submissions to the self.scores
list. The grade_submission method will be useful here!

def grade_all(self):
for s in self.submissions:

self.scores.append(self.grade_submission(s))

(f) (1.0 pt) Congratulations on implementing the Question and Exam classes! C88C TAs have one last question about
the design of these classes. Currently, neither Question nor Exam inherit from each other. Should Question be a
subclass of Exam?

No, the Question class implements methods that Exams should not have

 No, the Exam class implements methods that Questions should not have

Yes, a Question is a type of Exam

Exam generated for _______________________________@berkeley.edu 19

11. (5.0 points) Tree Sort

Write a generator function, tree_sort, that takes in a Tree instance whose values are integers and yields all values
from the tree in ascending order. You may assume that all values in the tree are unique.

def tree_sort(t):
"""
>>> t = Tree(1, [Tree(3, [Tree(4)]), Tree(2), Tree(6, [Tree(5)])])
>>> for val in tree_sort(t):
... print(val)
...
1
2
3
4
5
6
"""
create a list of generators, one for each branch
sorted_branches = [tree_sort(b) for b in t.branches]
smallest values from each branch
next_smallest = [next(gen) for gen in sorted_branches]
value_yielded = False

while len(next_smallest) > 0:
find the index of the smallest value from the branches
min_index = min(range(len(next_smallest)), key=lambda i: ____(a)____)

if not value_yielded and ____(b)____:
yield t.value
value_yielded = True

yield ____(c)____

try:
update the value at the yielded position
next_smallest[min_index] = ____(d)____

except StopIteration: # if no elements left in the generator
next_smallest.____(e)____(min_index)
sorted_branches.____(e)____(min_index)

yield the value of t if it is not yielded during the while loop
if not value_yielded:

yield t.value

(a) (1.0 pt) Which of the following can fill in blank (a)?

next(sorted_branches[i])

i

 next_smallest[i]

sorted_branches[i]

(b) (1.0 pt) Fill in blank (b)

t.value < next_smallest[min_index]

Exam generated for _______________________________@berkeley.edu 20

(c) (1.0 pt) Fill in blank (c)

next_smallest[min_index]

(d) (1.0 pt) Fill in blank (d)

next(sorted_branches[min_index])

(e) (1.0 pt) Which of the following can fill in blank (e)? The two blanks labeled (e) in the skeleton are supposed to
have the same solution.

append

extend

remove

 pop

Exam generated for _______________________________@berkeley.edu 21

12. (4.0 points) JoJo’s Bizarre Squared-venture

Jolyne and Johnny are trying to compare different ways of squaring a positive number n. Answer the following questions
with the WORST-CASE time complexity of each function. Assume each basic operation (addition, multiplication,
assignment) takes constant time.

(a) (1.0 pt)

def squared_platinum(n):
res = 0
for za_warudo in range(n):

res += n
return res

O(1)

 O(n)

O(log(n))

O(nˆ2)

O(2ˆn)

(b) (1.0 pt)

def squared-mit_purple(n):
return n * n

O(log(n))

O(2ˆn)

O(n)

 O(1)

O(nˆ2)

(c) (1.0 pt)

def squared_experience(n):
if n % 2 == 0:

return 4 * square(n // 2)
return n * n

O(n)

O(nˆ2)

O(2ˆn)

O(1)

 O(log(n))

Exam generated for _______________________________@berkeley.edu 22

(d) (1.0 pt)

def squared-y_diamond(n):
res = 0
for kira_queen in range(n):

for j in range(n):
res += 1

return res

O(log(n))

 O(nˆ2)

O(1)

O(n)

O(2ˆn)

Exam generated for _______________________________@berkeley.edu 23

13. (10.0 points) Froggy Friends

You have quirky friends who give off very interesting vibes. You have a table friends that contains demographic
information about your friends, including the column animal which is what type of animal energy you think they give
off the most, e.g. golden retriever energy. You also have a table animals that describes each animal, the animal column
in friends corresponds to the animal column in animals. Not all rows are shown for brevity, but your code should
work even if there are more rows (no hardcoding to match output).

friends

name age year animal

Jade 18 Freshman Frog

Shuming 20 Junior Prairie Dog

Jay 19 Sophomore Capybara

Annie 19 Sophomore Cat

Emma 20 Junior Cat

animals

animal sound size color

Frog ribbit tiny green

Prairie Dog bark small brown

Capybara bark large brown

Cat meow small black

(a) (2.0 pt) Write a query to output the name and year of all friends from friends that have “Frog” as their animal.

Intended output:

name year

Jade Freshman

SELECT name, year
FROM friends
WHERE animal = "Frog"

(b) (3.0 pt) Write a query to output the animal and the average age as avg_age of your friends for each animal and
ordered by the avg_age descending. Hint: Use AVG

Intended output:

Exam generated for _______________________________@berkeley.edu 24

animal avg_age

Prairie Dog 20

Cat 19.5

Capybara 19

Frog 18

SELECT animal, AVG(age) as avg_age
FROM friends
GROUP BY animal
ORDER BY avg_age DESC

(c) (5.0 pt) Write a query to output the sound and count of each sound corresponding to the animal of each friend
in friends, ordered by the count ascending. Hint: You will have to join the two tables and use COUNT(*).

Intended output:

sound COUNT

ribbit 1

bark 2

meow 2

SELECT a.sound, COUNT(*)
FROM friends as f, animals as a
WHERE f.animal = a.animal
GROUP BY a.sound
ORDER BY COUNT(*)

Exam generated for _______________________________@berkeley.edu 25

14. (0.0 points) End! (Optional)

(a) Draw your favorite staff member or tell us a joke!

Exam generated for _______________________________@berkeley.edu 26

No more questions.

