
CS 88 Computational Structures in Data Science
Spring 2023 midterm

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of C88C.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official C88C Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu) <EMAILADDRESS>

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You must include all answers within the boxes.
• Online Exams: You may start your exam as soon as you are given the password.

– You may have a digital version of the C88C Reference Sheet, but no other files.
– Exam Clarifications: https://tinyurl.com/clarifications-sp23
– Reference Sheet: https://tinyurl.com/mt-reference

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing

Exam generated for <EMAILADDRESS> 2

1. (3.0 points) Conceptual

(a) (0.5 pt) {"2M": "Rent", "2M": "It's My Birthday"} is a valid dictionary.

True

False

(b) (0.5 pt) {"Sly": "Deal", "Forced": "Deal"} is a valid dictionary.

True

False

(c) (1.0 pt) Which function call to monopoly_deal would result in an infinite loop?

def monopoly_deal(num_cards, pass_go):
num_cards += 2
while num_cards > 7:

if pass_go:
num_cards += 2

else:
num_cards -= 1
if num_cards % 2 == 0:

print("debt collector")
else:

print("deal breaker")
return None

monopoly_deal(0, True)

monopoly_deal(7, True)

monopoly_deal(0, False)

monopoly_deal(7, False)

(d) (0.5 pt) Below is the code for the Player ADT

def make_player(name, game):
return {"name": name, "game": game}

def get_player_name(player):
return player["name"]

def get_player_game(player):
return player["game"]

Does the following code break the Abstraction Barrier?

aymeric = make_player("Aymeric Barrier", "Monopoly Deal")
print(get_player_name(aymeric) + " lost at " + aymeric["game"])

Breaks Abstraction Barrier

Does NOT Break Abstraction Barrier

(e) (0.5 pt) Does the following code break the Abstraction Barrier?

hetal = make_player("Hetal Shah", "Monopoly Deal")
print(get_player_name(hetal) + " won at " + get_player_game(hetal))

Breaks Abstraction Barrier

Does NOT Break Abstraction Barrier

Exam generated for <EMAILADDRESS> 3

2. (3.0 points) Mutation and Creation Conceptual Questions

(a) (0.5 pt) Based on the given example output, does the function mystery1 mutate the input list or return a new
list?

>>> lst = [1, 2, 3]
>>> mystery1(lst)
>>> lst
[2, 3, 4]

mystery1 mutates the input list

mystery1 returns a new list

(b) (0.5 pt) Based on the given example output, does the function mystery2 mutate the input list or return a new
list?

>>> lst = [1, 2, 3]
>>> mystery2(lst)
[2, 3, 4]
>>> lst
[1, 2, 3]

mystery2 mutates the input list

mystery2 returns a new list

(c) (1.0 pt) You are given the following function:

def remove_threes(lst):
return list(filter(lambda x: x != 3, lst))

You are also given the list input = [1, 2, 3].

Will the function call remove_threes(input) mutate input?

input will be mutated

input will not be mutated

(d) (1.0 pt) You are given the following function:

def duplicate_lst(lst):
new_lst = lst
for x in lst:

new_lst.append(x)
return new_lst

You are also given the list input = [1, 2, 3].

Will the function call duplicate_lst(input) mutate input?

input will be mutated

input will not be mutated

Exam generated for <EMAILADDRESS> 4

3. (5.0 points) What Would Python Do (WWPD)

For each expression below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. The output may have multiple lines. If an error occurs, write “Error” (if any lines are displayed before the
error, include those in your output). If the expression evaluates to a function, write “Function”.

>>> x = 5
>>> y = 4
>>> z = [lambda y: y, lambda x: x, lambda x: y]
>>> def g(l):
... x = 6
... return l(x)
...
>>> r = lambda n: lambda phi: z[-2](phi(n))

(a) (1.0 pt)

>>> z[1]

(b) (1.0 pt)

>>> [q(x) for q in z]

(c) (1.0 pt)

>>> [x + n for n in z]

(d) (1.0 pt)

>>> g(lambda y: x + 1)

(e) (1.0 pt)

>>> r(1)(2)

Exam generated for <EMAILADDRESS> 5

4. (5.0 points) TGIF!

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the code runs
to completion.

(a) (1.0 pt) What is the return value of the lambda function in frame f3? (box a)

(b) (1.0 pt) What is the parent frame of the lambda function in frame f3? (box b)

(c) (1.0 pt) What is the value of woo, tabletops and the return value of the f1 frame? (box c)

Note: these three values point to the same thing!

func tabletops

shots

func lambda <line 11>

func tgif

(d) (1.0 pt) What is the element at index 2 in shots ? (box d)

(e) (1.0 pt) What is the element at index 3 in shots ? (box e)

Exam generated for <EMAILADDRESS> 6

5. (3.0 points) Debugging

Your friend Alice is trying to write a function count_elements that counts how many times a number appears in a list.
This function returns a dictionary where each number is mapped to its count.

>>> lst = [1, 4, 5, 4, 7, 7, 2, 7]
>>> count_elements(lst)
{1: 1, # 1 appears once
4: 2, # 4 appears twice
5: 1,
7: 3, # 7 appears three times
2: 1}

Here is Alice’s code:

def count_elements(lst):
alice_dict = {}
for elem in lst:

alice_dict[elem] += 1
return alice_dict

Use this code to answer the following question.

(a) (1.0 pt) Will this code execute the expected behavior?

Yes, this code correctly counts how many times each element appears in the list and stores it in alice_dict.

No, this code’s count is less than the actual count by 1 (i.e. the code counts 2 when the element appears 3
times).

No, this code errors when it reaches an element of the list that already appeared previously.

No, this code always errors on the first iteration of the for loop.

No, this code is incorrect for a different reason not listed here.

Exam generated for <EMAILADDRESS> 7

(b) (2.0 pt) Your friend Bob tries to do something similar using his function bob_func. However, instead of storing
how many times the number appears as the value, he wants to store a list of indices at which the number appears.

>>> lst = [1, 4, 5, 4, 7, 7, 2, 7]
>>> bob_func(lst)
{1: [0], # 1 appears at index 0
4: [1, 3], # 4 appears at indices 1 and 3
5: [2],
7: [4, 5, 7],
2: [6]}

Here is Bob’s code:

def bob_func(lst):
bob_dict = {} # line 1
for i in lst: # line 2

elem = lst[i] # line 3
bob_dict[elem] = i # line 4

return bob_dict # line 5

Here is Bob’s explanation for his code:

“First, I create a new empty dictionary to hold my result. Then, I iterate over the indices of the list since
I know that I need to keep track of which index each element corresponds to. On line 3, I define a new
variable elem and assign it to lst[i], which is the element of the list that the loop is currently on. On
the next line, I update my dictionary using elem as the key and the index, i, as the value. At the end, I
return the dictionary that I created.”

But, Bob’s code does not exactly match his explanation, and he also does not fulfil the problem’s original goal.
Which of the following suggestions should Bob implement to make his code more closely match his explanation and
the problem’s goal? (Select all that apply)

2 On line 2, change the for loop to for i in range(len(lst)):

2 On line 2, change the for loop to while i in lst:

2 Replace line 3 with elem = i.

2 Replace line 4 with bob_dict[elem].append(i).

2 Replace line 4 with bob_dict[elem].extend(i).

Exam generated for <EMAILADDRESS> 8

6. (7.0 points) Sum to Single Digit

(a) (7.0 pt) Given a number num, find the sum of all the digits of num. If this sum is not a single digit number, find
the sum of all its digits. Continue this process until the sum has only one digit.

Print each sum including the last one digit sum you get, and return how many times you went through this process.

Note: num is always nonnegative.

def sum_to_single_digit(num):
"""
>>> a = sum_to_single_digit(123) # num = 123, 1st sum = 6, terminate
123
6
>>> a # had to sum digits once
1
>>> b = sum_to_single_digit(12345) # num = 12345, 1st sum = 15, 2nd sum = 6, terminate
12345
15
6
>>> b # had to sum digits twice
2
"""
count = _________________________________
while _________________________________:

total = _________________________________
while num _________________________________:

total += _________________________________
num = num // 10

num = _________________________________

print(num)
return _________________________________

def sum_to_single_digit(num):

count = __

while ___:

__

total = __

while num ___:

total += ___
num = num // 10

num = __

__
print(num)

return __

Exam generated for <EMAILADDRESS> 9

7. (6.0 points) C88C Voting Machine

(a) (2.0 pt) You are implementing the add_votes function for the C88C voting machine. This function takes in the
name of the candidate, the amount of votes they recieved, and a dictionary votes which maps candidate names to
their number of votes.

The function should modify votes by either updating the candidate’s current entry or creating a new entry for the
candidate.

def add_votes(name, amount, votes):
"""
>>> votes = {'Michael': 400, 'Hetal': 100}
>>> add_votes('Karim', 75, votes) // add new entry
>>> votes = {'Michael': 400, 'Hetal': 100, 'Karim': 75}
>>> add_votes('Michael', 100, votes) // update existing entry
>>> votes = {'Michael': 500, 'Hetal': 100, 'Karim': 75}
"""
if ___:

else:

def add_votes(name, amount, votes):

if ___:

else:

Exam generated for <EMAILADDRESS> 10

(b) (4.0 pt) For this part, you will now have access to another dictionary parties that maps the name of a party to a
list of candidate names within that party. Using the parties and votes dictionary, implement the vote_summary
function which prints the name of each party followed by the total number of votes that all of the candidates within
that party recieved.

def vote_summary(votes, parties):
"""
>>> parties = {'Professor Party': ['Michael'], 'TA Party': ['Karim', 'Hetal']}
>>> votes = {'Michael': 500, 'Hetal': 100, 'Karim': 75}
>>> vote_summary(votes, parties)
Professor Party : 500
TA Party : 175
"""
for ____________________________:

count = ____________________________
for name in votes:

if ____________________________:

print(____________________________, ':', count)

def vote_summary(votes, parties):

for ___:

count = __
for name in votes:

if __:

__

print(_____________________________________, ’:’, count)

Exam generated for <EMAILADDRESS> 11

8. (3.0 points) Higher Order Combiners

Implement high_order_combiner, which takes in a two-argument function combiner, an integer start representing
the start value, and a one-argument function is_brake which returns either True or False.

When high_order_combiner is called, it will continuously return one-argument functions until the argument to said
function is a brake, i.e., calling is_brake on the argument returns True. Once a brake argument is received, the high
order combiner returns the result of combining all arguments passed in.

def high_order_combiner(combiner, start, is_brake):
"""
>>> c1 = high_order_combiner(lambda x, y: x + y, 0, lambda x: x % 2 == 0)
>>> c1(1)(3)(5)(6) # 0 + 1 + 3 + 5 + 6
15
>>> c2 = high_order_combiner(lambda x, y: max(x, y), 8, lambda x: x % 10 == x // 10)
>>> c2(888)(88) # maximum of 8, 888, and 88
888
>>> c2(88)
88
>>> c2(8) # when a brake is not encountered yet, return another function
<function <lambda> at ...>
>>> c2(8)(88)(888) # c2(8)(88) returns an integer, so it cannot accept the additional argument 888
TypeError: 'int' object is not callable
"""
def helper(x, combo):

if is_brake(x):
return ____(a)____

else:
return lambda y: helper(y, ____(b)____)

return ____(c)____

(a) (1.0 pt) Which of these could fill in blank (a)?

combo

x

combiner(x, combo)

combiner(x, start)

combiner(start, combo)

(b) (1.0 pt) Which of these could fill in blank (b)?

combo

x

combiner(x, combo)

combiner(x, start)

combiner(start, combo)

(c) (1.0 pt) Which of these could fill in blank (c)?

helper

combiner

lambda x: helper(x, start)

lambda x: combiner(x, start)

lambda x: higher_order_combiner(combiner, x, is_brake)

Exam generated for <EMAILADDRESS> 12

9. (6.0 points) Stocko Mode

In this problem, we will be implementing a simplified stock market using ADTs. In this market, people can buy and sell
stocks at a set market rate. To implement this market, we will be using two ADTs, the Stock Market ADT and the
Account ADT. The account holds the balance in someone’s account as well as all of the stocks that they own. The
market holds the prices for the various stocks.

Implement the Stock Market ADT and the Account ADT:

• The Stock Market ADT is internally represented as a dictionary which maps tickers to prices (an integer number).
The abbreviated name of a stock is known as a ticker, e.g. “AAPL” for “Apple”.

• The Account ADT is internally represented as a list with a length of 2. The first element is a list of all the stocks
that the account owns while the second argument is an integer representing the balance of the account.

After this we will implement some client-side code that will utilize these ADTs to complete a transaction. For the
client-side code, remember to respect the Abstraction Barrier.

Stock Market ADT
def create_market():

"""
>>> m = create_market()
>>> add_or_update_price(m, "CS", 88)
>>> johnnys_acct = make_account(100)
>>> buy_stock(m, johnnys_acct, "CS")
>>> get_assets(johnnys_acct)
["CS"]
>>> add_or_update_price(m, "CS", 188)
>>> sell_stock(m, johnnys_acct, "CS")
>>> get_balance(johnnys_acct)
200
"""
return {}

def add_or_update_price(stock_market, ticker, price):

def get_price(stock_market, ticker): # assume that the stock exists in the market
return __________________________________

Account ADT
def make_account(starting_money):

return [[], starting_money]
def add_money(account, amount):

def subtract_money(account, amount)

add_money(account, -amount)
def add_stock(account, ticker):

def remove_stock(account, ticker): # assume the stock is in the portfolio

account[0].remove(ticker)
def get_balance(account):

return account[1]
def get_assets(account):

return account[0]

Client-side code
def buy_stock(stock_market, account, ticker): # assume the stock exists in the market

def sell_stock(stock_market, account, ticker):

Exam generated for <EMAILADDRESS> 13

(a) (1.0 pt) The following two questions ask you to complete functions in the Stock Market ADT.
Implement the function add_or_update_price, which is part of the Stock Market ADT.

def add_or_update_price(stock_market, ticker, price):

(b) (1.0 pt) Implement the function get_price, which is part of the Stock Market ADT.

def get_price(stock_market, ticker):

__

(c) (1.0 pt) The following two questions ask you to complete functions in the Account ADT. Implement
the add_money function which is part of the Account ADT.

#Account ADT
def make_account(starting_money):

return [[], starting_money]
def add_money(account, amount):

def add_money(account, amount):

(d) (1.0 pt) Implement the add_stock function which is part of the Account ADT.

def make_account(starting_money):
return [[], starting_money]

def add_stock(account, ticker):

def remove_stock(account, ticker):
account[0].remove(ticker)

def add_stock(account, ticker):

(e) (1.0 pt) The following two questions ask you to complete client-side functions. Do not violate the
abstraction barrier! Implement the buy_stock function

def buy_stock(stock_market, account, ticker):
__
__

def buy_stock(stock_market, account, ticker):

__

__

Exam generated for <EMAILADDRESS> 14

(f) (1.0 pt) Implement the sell_stock function

def sell_stock(stock_market, account, ticker):
__
__

def sell_stock(stock_market, account, ticker):

__

__

Exam generated for <EMAILADDRESS> 15

10. (7.0 points) Where’s my peanut?

You are a squirrel on Berkeley campus, and one of your important daily jobs is to find yummy peanuts on open fields.
Definition: a field in this context is a possibly nested list representing the field you are on. Its elements are either
'pebble', 'peanut', or another list representing a deeper field. You start from level 1. Every time you enter a nested
list, level increases by 1. For example, the list ['pebble', ['pebble', ['pebble', 'peanut']], 'pebble'] has
3 levels, and the peanut is at level 3. It’s guaranteed that each field only contains 1 peanut. Implement
find_peanut, which takes in a list field, and a positive integer limit. It returns the level where the peanut lies if it
does not exceed limit; otherwise, return 'No peanut found'. Hint : isinstance(x, list) returns True if x is a list
and False otherwise. For example:

>>> isinstance('peanut', list)
False
>>> isinstance(['peanut'], list)
True

def find_peanut(field, limit):
"""
>>> field_1 = ['pebble', ['pebble', 'pebble', ['pebble', 'peanut']], 'pebble']
>>> find_peanut(field_1, 3)
3
>>> find_peanut(field_1, 2)
'No peanut found'
>>> field_2 = ['pebble', ['pebble', ['pebble']], 'peanut']
>>> find_peanut(field_2, 1)
1
>>> field_3 = ['pebble', ['pebble', ['pebble', ['pebble']], 'peanut'], 'pebble']
>>> find_peanut(field_3, 3)
2
"""
def helper(curr_field, curr_level):

if ____(a)____ or ____(b)____:
return 'No peanut found'

elif ____(c)____:
return curr_level

else:
if isinstance(curr_field[0], list):

result = helper(____(d)____, ____(e)____)
if result != 'No peanut found':

return result
return helper(____(f)____, ____(g)____)

return helper(field, 1)

(a) (1.0 pt) Which of the following CANNOT fill in blank (a)?

curr_field

not curr_field

curr_field == []

len(curr_field) == 0

bool(curr_field)

(b) (1.0 pt) Assume that one of the valid options in the previous part is used to fill in blank (a). Now, fill in blank
(b).

Exam generated for <EMAILADDRESS> 16

(c) (1.0 pt) Which of the following can fill in blank (c)? Choose all that apply.

2 curr_field[0] == 'peanut'

2 curr_field[0] == ['peanut']

2 curr_field == 'peanut'

2 curr_field == ['peanut']

2 'peanut' in curr_field

2 ['peanut'] in curr_field

2 len(curr_field) == 1

(d) (1.0 pt) Fill in blank (d).

(e) (1.0 pt) Fill in blank (e).

(f) (1.0 pt) Which of the following can fill in blank (f)?

curr_field

curr_field[0]

curr_field[1:]

(g) (1.0 pt) Fill in blank (g).

Exam generated for <EMAILADDRESS> 17

11. (8.0 points) Seal of Approval :3

Your favorite animal are seals, and because you love them so much you want to implement a class to model and simulate
them. You start off by writing a Seal class.

class Seal:
qualities = ['round', 'cute', 'smiley']

def __init__(self, name):
self.name = name
self.qualities = Seal.qualities[:] # copy of the Class attribute qualities

def compliment(self, new_quality):
"""
>>> seal_friend = Seal('fren')
>>> seal_friend.qualities
['round', 'cute', 'smiley']
>>> Seal.qualities
['round', 'cute', 'smiley']
>>> seal_friend.compliment('fluffy')
fren you are so round
fren you are so cute
fren you are so smiley
fren you are so fluffy
>>> seal_friend.qualities
['round', 'cute', 'smiley', 'fluffy']
>>> Seal.qualities
['round', 'cute', 'smiley']
"""

for quality in ___________________________:

print(________________ + " you are so " + quality)

(a) (3.0 pt) The constructor has been given to you; your job is to implement the method compliment, which takes in
new_quality: a string representing a new positive quality about the seal.

compliment will add new_quality to the end of the qualities attribute of the given Seal instance. Then, each of
the seal’s qualities is printed out as a compliment according to the format in the doctest.

You should add new_quality such that subsequent calls to compliment remember previous compliments given to
the Seal instance.

def compliment(self, new_quality):

__

for quality in __:

print(______________________ + " you are so " + quality)

Exam generated for <EMAILADDRESS> 18

(b) (3.0 pt) Sometimes seals have caretakers who take care of many seals. In this part, we will be implementing a
CareTaker class.

class CareTaker:
def __init__(self, names, compliments):

"""
>>> names = ['Tsubaki', 'Yuki']
>>> compliments = ['smart', 'fluffy']
>>> care_taker = CareTaker(names, compliments)
>>> care_taker.seal_compliments
{'Tsubaki': 'smart', 'Yuki': 'fluffy'}
"""
d = ______________________
for ______________________:

def compliment(self, seal):
"""
>>> yuki = Seal('Yuki')
>>> whiskers = Seal('Whiskers')
>>> care_taker = CareTaker(['Tsubaki', 'Yuki'], ['smart', 'fluffy'])
>>> care_taker.compliment(yuki)
Yuki you are so round
Yuki you are so cute
Yuki you are so smiley
Yuki you are so fluffy
"""
_________________.compliment(_________________)

Each CareTaker object has an instance attribute seal_compliments, which is a dictionary of the names of their
seals mapped to a unique compliment for each seal. The constructor is given names, a list of seal names, and
compliments, a list of compliments corresponding to each seal name (compliments[0] corresponds to names[0],
compliments[1] corresponds to names[1] . . .). In the constructor, create the instance attribute seal_compliments
and populate it with a dictionary mapping seal name to its compliment.

def __init__(self, names, compliments):

d = __

for ___:

__

__

Exam generated for <EMAILADDRESS> 19

(c) (2.0 pt) Implement compliment for the CareTaker class, which takes in a Seal object seal, and compliments the
seal with their corresponding compliment from self.compliments. You can assume the seal will be one of the
CareTaker’s seals.

def compliment(self, seal):
"""
>>> yuki = Seal('Yuki')
>>> whiskers = Seal('Whiskers')
>>> care_taker = CareTaker(['Tsubaki', 'Yuki'], ['smart', 'fluffy'])
>>> care_taker.compliment(yuki)
Yuki you are so round
Yuki you are so cute
Yuki you are so smiley
Yuki you are so fluffy
"""
_________________.compliment(_________________)

def compliment(self, seal):

_____________________.compliment(__________________________)

Exam generated for <EMAILADDRESS> 20

No more questions.

