
DS C88C Computational Structures in Data Science
Spring 2024 final <NAME>

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of C88C.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official C88C Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Please write your SID at the top of each page!
• You must include all answers within the boxes.
• If you must write outside the box, please draw an arrow.
• Use the blank space as scratch paper to work out your solutions.

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing

<NAME> SID: _________________ 2

1. (8.0 points) Conceptual Questions

Please note that each part is ran independently of each other.

(a) (1.0 pt) Suppose the following code has been executed:

x = [1, 2, 3]
y = [4, 5, 6]
x.append(y.pop(2))
x.remove(3)

What is the value of x now?

(b) (2.0 pt) Suppose the following code has been executed:

x = []
x is [] # This returns False
y = x
y.append(88)

Which of the following return True? (Select all that that apply.)

2 x is y

2 y is [88]

2 x == y

2 x == []

(c) (2.0 pt)

Cat Class
class Cat:

def __init__(self, size, age):
self.size = size
self.age = age

def meow(self):
print('meow')

Kitten Class
class Kitten(Cat):

#Implementation Hidden

Sally wants to use inheritance to help her create the Kitten class. Does the following code for Kitten’s init method
correctly use inheritance?

def __init__(self, age):
super().__init__(age)

No, the code will error because the Kitten class does not properly inherit from the Cat class

Yes, the code uses inheritance to succesfully create the init method.

No, the code will error because of a missing argument

<NAME> SID: _________________ 3

(d) (2.0 pt) Now Sally wants to implement the meow method for the Kitten class. Suppose that the Kitten class no
longer inherits from the Cat class. Additionally, we want a kitten to both meow and mew when the meow method
is called. Does the code below accomplish this?

def meow(self):
Cat.meow(self)
print('mew')

No, the method does not get the kitten to both meow and mew

Yes, this implementation of the meow method works correctly.

No, the code does not properly call the meow method from the Cat class

(e) (1.0 pt) All branches of a tree are also themselves trees (i.e. they are all instances of the Tree class).

False

True

<NAME> SID: _________________ 4

2. (12.0 points) Michael Madness

Fill in the environment diagram. For short answer questions, use relevant syntax and, if applicable, separate elements
using commas. For example, if your answer is a list with integer elements 1, 2, and 3, write [1, 2, 3]. If your answer
is 8.8, write 8.8. For string values, use single quotes, such as 'cs88'; do not use double quotes, such as "cs88". These
rules will be strictly enforced: If your answer is correct but does not adhere to the above rules, you will not receive
any points for it!

Environment Diagram

(a) (2.0 pt) Fill in the space denoted by (a). Remember to use the correct syntax when writing your answer.

(b) (2.0 pt) What is the function or object denoted by (b)?

The list object denoted by (a)

The list object ['88', '88']

func hael(first, second) [parent=Global]

func hael(second, first) [parent=f1]

(c) (2.0 pt) Fill in the spaces denoted by (c). Remember to use the correct syntax when writing your answer.

<NAME> SID: _________________ 5

(d) (2.0 pt) What is the value denoted by (d)?

Global

f2

f3

f1

(e) (2.0 pt) What is the variable, pointer pair denoted by (e)?

first, pointing to the list object denoted by (a)

second, pointing to the list object denoted by (a)

first, pointing to the list object ['88', '88']

second, pointing to the list object ['88', '88']

(f) (2.0 pt) What is the variable, pointer pair denoted by (f)?

first, pointing to the list object denoted by (a)

first, pointing to the list object ['88', '88']

second, pointing to the list object denoted by (a)

second, pointing to the list object ['88', '88']

<NAME> SID: _________________ 6

3. (8.0 points) What Would Python Do (WWPD)

For each expression below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. The output may have multiple lines. If an error occurs, write “Error” (if any lines are executed/displayed
before the error, include those in your output). If a function is returned, write “Function”. If the value “None” is returned,
write “None”.

NOTE: Assume each part is executed in order. Previous parts DO impact the current expression. (i.e., part B assumes
part A was executed, as so on.) This means that variables that are previously defined/changed persist throughout the
rest of the question

from functools import reduce
from operator import add, mul

func = lambda x: lambda: x
ingredients = {"flour": 5, "eggs": 2}

def stir(count, elements):
res = []
for i in range(count):

for j, k in elements.items():
if k % 2 == 0:

res.append(func(k))
else:

res.extend([func(k)()])
return res

adder = lambda x: [i + 1 for i in x]

(a) (1.0 pt)

>>> a = func([5,6])()
>>> a

(b) (1.0 pt)

>>> b = adder(a)
>>> b

(c) (1.0 pt)

>>> a = [1]
>>> print(a.extend([b]))

(d) (1.0 pt)

>>> a

<NAME> SID: _________________ 7

(e) (1.0 pt)

>>> c = stir(2, ingredients)
>>> c

[5, Function]

Error

[5, 5, 5, 5]

[5, 5]

[5, Function, 5, Function]

(f) (1.0 pt)

>>> adder = lambda x: [i + 1 for i in x]
>>> list(map(lambda x: adder, range(3)))

Error

[None, None, None]

[5, 5, 5]

[Function, Function, Function]

(g) (1.0 pt)

>>> reduce(lambda x, y: x and y, [True, False, True])

[]

Error

False

None

True

(h) (1.0 pt)

>>> good_schools = filter(lambda s: s[0:2] == 'UC', ['UC Berkeley', 'Stanford'])
>>> next(good_schools)

None

Error

['UC Berkeley']

'Stanford'

'UC Berkeley'

<NAME> SID: _________________ 8

4. (12.0 points) Debugging

You’re a new intern at a food review app company named Belly. You’ve been assigned to fix some mistakes that the
past intern made while writing some important functions relating to generating food recommendations.

The previous intern wrote a series of functions that take in a dictionary of restaurants with the following structure:

>>> restaurants_and_ratings = {
'Sliver': [2, 3.5, 5],
'Cheeseboard': [1, 4],
'Artichokes': [4]

}

Answer a series of questions that fix the previous intern’s mistakes.

(a) (4.0 pt) The first function that you’re tasked to fix is one that takes in a dictionary where each key represents
a restaurant and each value represents a list of that restaurant’s ratings [rating1, rating2, ...]. It should
output a list, where each item is a 2-item list [restaurant, average_rating]. Here is the function:

def generate_list(d):
avgs = []
for restaurant in d:

avg = sum(d) / len(d)
avgs.append(restaurant, avg)

return avgs

The intended output is as follows:

>>> restaurants_and_ratings = {
'Sliver': [2, 3.5, 5],
'Cheeseboard': [1, 4],
'Artichokes': [4]

}
>>> generate_list(restaurants_and_ratings)
[['Sliver', 3.5], ['Cheeseboard', 2.5], ['Artichokes', 4.0]]

Unfortunately, the current code has some bugs. How would you fix this function so the code does not error and
calling the function results in the correct output? (Please Select All that apply. Multiple choices may need
to be selected for the code to run correctly.)

2 Replace sum(d) / len(d) with sum(d[restaurant]) / len(d[restaurant])

2 Replace d with d.items().

2 Replace avgs.append(restaurant, avg) with avgs.append([restaurant, avg])

2 Replace avgs.append(restaurant, avg) with avgs.extend(restaurant, avg)

<NAME> SID: _________________ 9

(b) (4.0 pt) The next function that you’re tasked to fix is one that takes in the generated list of restaurants and their
average ratings and outputs a list, sorted from highest to lowest average rating. Here it is:

def sort_restaurants(l):
if len(l) <= 1:

return l
else:

first = l[0]
lst1 = [e for e in l[1:] if e[1] <= l[0][1]]
lst2 = [e for e in l[1:] if e[1] > l[0][1]]
return sort_restaurants(lst1) + [first] + sort_restaurants(lst2)

Here is the intended output:

>>> restaurant_list = [['Sliver', 3.5], ['Cheeseboard', 3.0], ['Artichokes', 4.0]]
>>> sort_restaurants(restaurant_list)
[['Artichokes', 4.0], ['Sliver', 3.5], ['Cheeseboard', 3.0]]

Will the previous intern’s code result in the correct output and run without erroring? Select only the option that
has the correct combination of Yes/No.

No, this code will order the list incorrectly (ascending). Yes, this code will not error.

Yes, this code will order the list correctly (descending). Yes, this code will not error.

Yes, this code will order the list correctly (descending). No, this code will error; l[0][1] should be replaced
with l[0].

No, this code will order the list incorrectly (ascending). No, this code will error; len(l) <= 1 should be
replaced with len(l) == 0.

(c) (4.0 pt) You can now assume that sort_restaurants results in the correctly ordered list. To save memory in the
company’s database, your manager asks you to modify sort_restaurants so that it mutates the list passed in.
This means that the updated intended output will be as following:

>>> restaurant_list = [['Sliver', 3.5], ['Cheeseboard', 3.0], ['Artichokes', 4.0]]
>>> sort_restaurants(restaurant_list)
>>> restaurant_list
[['Artichokes', 4.0], ['Sliver', 3.5], ['Cheeseboard', 3.0]]

Will you need to modify sort_restaurants further? Select only the option that has the correct combination of
Yes/No and reasoning.

No, the current code mutates the list passed in.

Yes, but we cannot use recursion because it is not possible to mutate a list using recursion.

Yes, because list slicing creates a copy of the given list and doesn’t mutate it directly.

Yes, and we need to use list functions such as .append(),.extend(), and pop().

<NAME> SID: _________________ 10

5. (11.0 points) Backyard Zoo

Michelle is trying to organize summer gift baskets for her backyard monkeys, but they each require different supplies!
Help her implement the class Monkey to help her decide how many m&ms, silly bands, and ring pops to put in the gift
baskets for each of these monkeys in her zoo.

class Monkey(LandAnimal):
def __init__(self, name, species, weight):

part (a)
def count_silly_bands(self):

part (b)
def items_in_gift_basket(self):

part (c)

(a) (3.0 pt) Below is the implementation for the LandAnimal class

class LandAnimal():
def __init__(self, species, weight):

self.species = species
self.weight = weight
self.ring_pops = 3

def count_m_and_ms(self):
"""return how many m&ms to put in a land animal's basket"""
return 5 * self.weight

Now since Monkeys are land animals, fill in the blanks to make the constructor of the Monkey class inherit from
the LandAnimal class. In addition to what’s initialized for every LandAnimal, we have a name for each monkey!

class Monkey(LandAnimal):
def __init__(self, name, species, weight):

"""
>>> george = Monkey("george", "curious monkey", 10)
>>> george.name
'george'
>>> george.species
'curious monkey'
>>> george.weight
10
"""
...

def __init__(self, name, species, weight):

__

<NAME> SID: _________________ 11

(b) (3.0 pt) To count the number of silly bands to put in each monkey’s basket, Michelle came up with a formula to
optimize her pet monkeys’ happiness. All of her monkeys start off with 10 silly bands. She then adds a silly band
for each even number between 1 (inclusive) and the length of the monkey’s name (exclusive). For some examples,
look at the doctests below.

You may assume the monkey does not have an empty string for a name.

def count_silly_bands(self):
"""
>>> monkey1 = Monkey("bob", "monkey", 12)
>>> monkey1.count_silly_bands()

bob is of length 3, which only contains 1 even value (2),
so only one silly band is added

11 # 10 + 1 = 11
>>> monkey2 = Monkey("stephanie", "monkey", 12)
>>> monkey2.count_silly_bands()

"stephanie" is of length 9, which contains 4 even values
(2, 4, 6, 8), so 4 silly bands are added

14 # 10 + 4 = 14
"""
...

def count_silly_bands(self):

for i in ___:

if ___:
res += 1

return res

(c) (3.0 pt) Now we want to implement the function items_in_gift_basket which will return a three element list
that represents how many associated m&ms, silly bands, and ring pops to put in each basket respectively.

def items_in_gift_basket(self):

return [_______________________, ____________________________,

___________________________]

(d) (2.0 pt) Michelle has now decided that all the Monkeys that are of the species ‘curious monkey’ deserve an
additional 3 ring pops, but only if the Monkey’s name is longer than 5 letters. Which of these actions should
Michelle take to adapt her code? (The change should not break any of the other parts of this question.)

Modify the constructor method of the Monkey class

Add a new method count_ring_pops to the Monkey class

Modify the constructor method of the LandAnimal class

Add a new method count_ring_pops to the LandAnimal class

<NAME> SID: _________________ 12

6. (12.0 points) Linked List Chains

We want to create a linked list chain with length n. Given an input list called lst, we will go through each element one
by one and add each to our new resulting linked list. If there are no more elements left in the input list before the result
linked list reaches length n, go back to the beginning of the input list to use the elements in order again. Assume that
calling print on any linked list will format the values in order, enclosed by angle brackets < and > (you will not need to
implement this yourself).

def link_chain(lst, n):
"""
>>> res_lnk = link_chain(['o_O'], 3)
>>> res_lnk
Link('o_O', Link('o_O', Link('o_O')))
>>> print(res_lnk)
<'o_O', 'o_O', 'o_O'>
>>> print(link_chain([1, 2], 7))
<1, 2, 1, 2, 1, 2, 1>
>>> print(link_chain([], 2))
<>
"""
if _________(a)_________ or _________(b)_________:

return _________(c)_________
lnk_rest = link_chain(__________________(d)__________________, _________(e)_________)
lnk_first = _________(f)_________
return Link(lnk_first, lnk_rest)

(a) (2.0 pt) Fill in blank (a). Select all options that would correctly fill in the blank.

2 lst is List.empty

2 lst == []

2 lst is Link.empty

2 not lst

2 lst is []

(b) (2.0 pt) Fill in blank (b).

(c) (2.0 pt) Fill in blank (c).

(d) (2.0 pt) Fill in blank (d).

(e) (2.0 pt) Fill in blank (e).

n

n-1

len(lst) - n

len(lst)

<NAME> SID: _________________ 13

(f) (2.0 pt) Fill in blank (f).

<NAME> SID: _________________ 14

7. (10.0 points) Trees

Implement sum_depth_k, which takes in a Tree instance and returns the sum of the values at depth k. Assume that k
will always be less than or equal to the height of the tree.

def sum_depth_k(t, depth):
"""
>>> t = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(6, [Tree(7)])])
>>> sum_depth_k(t, 0)
1
>>> sum_depth_k(t, 1) # 2 + 6
8
>>> sum_depth_k(t, 2) # 4 + 5 + 7
16
"""
if depth == 0:

return _____(a)_____
elif t.is_leaf():

return _____(b)_____
else:

total = _____(c)_____
for __________(d)_____________:

___________(e)_____________
return total

(a) (2.0 pt) Fill in blank (a).

return __

(b) (2.0 pt) Fill in blank (b).

return __

(c) (2.0 pt) Fill in blank (c).

total = __

(d) (2.0 pt) Fill in blank (d).

for ___:

(e) (2.0 pt) Fill in blank (e).

__

<NAME> SID: _________________ 15

8. (11.0 points) Cyclic Generator

Implement the generator function cyclic_generator which takes in a non-empty list of one-argument functions fns
and a non-empty list values, and applies the functions to the elements of values in a cyclic fashion infinitely. Note
that len(fns) is NOT necessarily the same as len(values). Read the doctests for examples.

def cyclic_generator(fns, values):
"""
>>> f1 = lambda x: x
>>> f2 = lambda x: x + 1
>>> f3 = lambda x: 10 - x
>>> fns = [f1, f2, f3]
>>> values = [2, 3, 4]
>>> gen = cyclic_generator(fns, values)
>>> next(gen) # f1(2) = 2
2
>>> next(gen) # f2(3) = 4
4
>>> next(gen) # f3(4) = 6
6
>>> next(gen) # cycle repeats infinitely afterward
2
>>> values = [2, 3, 4, 5] # len(values) != len(fns)
>>> gen = cyclic_generator(fns, values)
>>> next(gen) # f1(2) = 2
2
>>> next(gen) # f2(3) = 4
4
>>> next(gen) # f3(4) = 6
6
>>> next(gen) # f1(5) = 5
5
>>> next(gen) # f2(2) = 3
3
>>> next(gen) # f3(3) = 7
7
>>> next(gen) # f1(4) = 4
4
"""
fns_index = 0
values_index = 0
while ___(a)___:

curr_fn = ___(b)___
curr_val = ___(c)___
___(d)___ curr_fn(curr_val)
fns_index += ___(e)___
values_index += ___(e)___

Hint: Use the modulo (%) operator. To see a special property of modulo, what do you notice when you do 0 % 3, 1 % 3,
2 % 3, 3 % 3, 4 % 3, 5 % 3, 6 % 3, etc.? How can you generalize this idea to achieve the cyclic nature of the function? If
you recall the cycle problem from HW 4, this problem is very similar!

(a) (2.0 pt) What should fill in blank (a)?

True

values_index < len(values)

fns_index < len(fns)

False

<NAME> SID: _________________ 16

(b) (3.0 pt) What should fill in blank (b)?

(c) (3.0 pt) What should fill in blank (c)?

(d) (1.0 pt) What should fill in blank (d)?

(e) (2.0 pt) What should fill in blank (e)? Note that blank (e) occurs twice - both have the same value.

<NAME> SID: _________________ 17

9. (5.0 points) Efficient or Not

(a) (1.0 pt) What is the run time of the following function counter_squared? Let n be the length of lst.

def counter_squared(lst):
counter = 0
new_lst = []
for i in lst:

counter *= i * i
new_lst.append(counter)

return new_lst

O(1)

O(log(n))

O(n)

O(nlog(n))

O(nˆ2)

O(2ˆn)

None of the above

(b) (1.0 pt) What is the run time of the following function random_func?

Hint : you don’t need to calculate the exact runtime.

def random_func(n):
val = 0
for i in range(n):

for j in range(i):
val += sum(map(lambda x: x * x, range(n)))

return val/n

O(1)

O(log(n))

O(n)

O(nˆ2)

O(nˆ3)

O(2ˆn)

None of the above

(c) (1.0 pt) Let us say that we create a new function random_func_new that is the same as random_func except the
5th line has been changed from val += sum(...) to val += (n - j) ** 2.

How will the run time of the new function change in relation to the original function in part b?

The new function is written here for clarity:

def random_func_new(n):
val = 0
for i in range(n):

for j in range(i):
val += (n - j) ** 2

return val/n

random_func_new is more efficient than random_func.

random_func_new is equally as efficient as random_func.

random_func_new is less efficient than random_func.

<NAME> SID: _________________ 18

(d) (1.0 pt) What is the run time of the following function weird_func?

def weird_func(n):
val = 0
while n > 0:

val += n
val //= 2
n //= 2

return val

O(1)

O(log(n))

O(nlog(n))

O(n)

O(nˆ2)

O(2ˆn)

None of the above

(e) (1.0 pt) What is the run time of the following function maps_on_maps_maps?

def maps_on_maps_maps(n):
return list(map(lambda x: x ** x, filter(lambda y: y % 2 == 0, range(n))))

O(1)

O(log(n))

O(nlog(n))

O(n)

O(nˆ2)

O(2ˆn)

None of the above

<NAME> SID: _________________ 19

10. (15.0 points) C88C Game Night

The members of the Data C88C staff are organizing a Game Night to unwind after a long semester. To ensure everyone
enjoys the event, all members were asked to fill out a “Game Preferences” form. Below are the two tables showcasing
their responses: staff for the course staff members and games for information about the games.

Table Name: staff

name drink_pref msg_pref snack_pref fav_game

Ethan soda text chips Mario Party
Rebecca coffee slack cookies Mario Party
Angela tea text fruit Jackbox
John soda email fruit Among Us
Karim water messenger chips Valorant
Lily coffee text cookies Stardew Valley
Michelle coffee email chips Minecraft
Ramya tea slack fruit Stardew Valley
Sean water instagram fruit Valorant
Ethan water slack cookies League
Miha soda text cookies Mario Party
Morgan soda messenger chips Mario Party
Nicholas soda text cookies League
Richik soda instagram fruit Minecraft
Satleen water text chips Minecraft

Table Name: games

name company genre max_players

Mario Party Nintendo Party 4
Jackbox Jackbox Games Party 10
Among Us Innersloth Party 15
Valorant Riot FPS 5
Stardew Valley ConcernedApe Indie 4
Minecraft Mojang Indie 40
League Riot Moba 5

(a) (3.0 pt) Write a query that outputs the name and msg_pref of all staff members whose favorite game is made by
Riot. Running this query should return a table that looks like:

name msg_pref

Karim messenger
Sean instagram
Ethan slack
Nicholas text

SELECT __

FROM __

WHERE __;

<NAME> SID: _________________ 20

(b) (3.0 pt) Write a query to list the names of staff members who prefer games that can accommodate 10 or more
players, along with their snack preferences. Order the results alphabetically (ascending) by the staff member’s
name. Running this query should return a table that looks like:

name snack_pref

Angela fruit
John fruit
Michelle chips
Richik fruit
Satleen chips

SELECT __

FROM __

WHERE ___

ORDER BY ___;

<NAME> SID: _________________ 21

(c) (4.0 pt) We want to find out what genres of games are the most popular among the C88C staff. Write a query that
outputs the genre and the total number of staff that prefers the genre. We want to list the genres in descending
order by the number of staff. Break ties by alphabetical order of the genre (ascending). Running this query should
return a table that looks like:

genre total_staff

Party 6
Indie 5
FPS 2
Moba 2

SELECT __

FROM __

JOIN __

ON __

GROUP BY __

ORDER BY ___;

(d) (5.0 pt) Write a query to count how many staff members prefer each game, grouped by their drink preference.
Display the fav_game, the drink_pref, and the count of staff members. Only include rows where the total count of
fav_game is more than 1 for that particular drink. Order the results by the number of staff members in descending
order. Running this query should return a table that looks like:

fav_game drink_pref staff_count

Mario Party soda 3
Valorant water 2

SELECT __

FROM __

GROUP BY __

HAVING __

ORDER BY ___;

<NAME> SID: _________________ 22

11. (0.0 points) Bonus Question!

This question is a bonus question, so you will not lose points if leave it blank. Take your best guess (the question was
deliberately written as is and there are no errors in it)! This entire page may be worth up to 2 points in total.

(a) (0.0 pt) The instructor of this class, Michael Ball, was Head TA for CS10 during his undergrad at Berkeley. In
what year did he win the “Outstanding GSI Award”? For reference, he won the “Outstanding GSI Award” in 2015.

(b) (0.0 pt) What is the value of True ** False in Python? Believe it or not, this is totally valid Python, even
though we think it’s a silly feature.

(c) (0.0 pt) Thanks for a great semester! Draw something fun!

<NAME> SID: _________________ 23

No more questions.

