
CS 88 Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

A name evaluates to
the value bound to
that name in the
earliest frame of
the current
environment in which
that name is found.

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1.Evaluate the header’s expression.
2.If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements:

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames (right):Code (left):

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to
argument

Return value is
not a binding!

Built-in function

User-defined
function

2

1

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

>>> digits = [1, 8, 2, 8]
>>> len(digits)
4
>>> digits[3]
8
>>> digits[1:]
[8, 2, 8]
>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

List Environment Diagram

digits

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

pairs

Lists “Aggregate” Methods

 >>> lst = [8, 61]
 >>> lst.append(10)
 >>> lst
 [8, 61, 10]
 >>> lst.extend([2, 3])
 >>> lst
 [8, 61, 10, 2, 3]
 >>> lst.insert(0, 88)
 >>> lst
 [88, 8, 61, 10, 2, 3]
 >>> lst[1:3]
 [8, 61]
 >>> lst.pop(0)
 88
 >>> lst
 [8, 61, 10, 2, 3]
 >>> lst.remove(61)
 >>> lst
 [8, 10, 2, 3]
 >>> lst.pop()
 3
 >>> lst
 [8, 10, 2]

 >>> lst = [-2, 4, 6]
 >>> len(lst)
 3

 >>> sum(lst)
 8
 >>> min(lst)
 -2
 >>> max(lst, key=lambda x: -x)
 -2
 >>> lst = [(1, 9), (2, 5), (3, 4)]
 >>> max(lst, key=lambda y: y[0] * y[1])
 (3, 4)

List Methods

for <name> in <expression>:
 <suite>
1. Evaluate the header

<expression>, which must yield
an iterable value (a list,
tuple, iterator, etc.)

2. For each element in that
sequence, in order:
A. Bind <name> to that element

in the current frame
B. Execute the <suite>

Executing a for statement:

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

..., -3, -2, -1, 0, 1, 2, 3, 4, ...

range(-2, 2)
Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0
starting value

Dictionary Methods

A combined expression that evaluates to a list using this evaluation
procedure:
1. Add a new frame with the current frame as its parent
2. Create an empty result list that is the value of the expression
3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1
B. If <filter exp> evaluates to a true value, then add the value

of <map exp> to the result list

>>> min(2, 1, 4, 3)
1
>>> max(2, 1, 4, 3)
4
>>> abs(-2)
2
>>> pow(2, 3)
8
>>> len('word')
4
>>> print(1, 2)
1 2

>>> 5 // 3
1
>>> 5 % 3
2
>>> 2 * 3
6
>>> 2 + 3
5
>>> 6 / 3
2.0

Miscellaneous Operations

>>> food = {“ham":10, “cheese”:12}
>>> food["cheese"]
12
>>> "peanuts" in food
False
>>> food["peanuts"] = 7 # adds
key-value pair to food dict
>>> "peanuts" in food
True
>>> food["ham"] = food["ham"] + 1
>>> food["ham"]
11
>>> [(key, food[key]) for key in
food]
[('ham', 11), (‘cheese', 12),
('peanuts', 7)]

[<map exp> for <name> in <iter exp> if <filter exp>]
Short version: [<map exp> for <name> in <iter exp>]

List comprehensions

Functional List Operations

map(function,
list_of_inputs)
transform each item by
a function.
function input: 1
argument (each item)
function output:
“anything”, a new item
map output: list of the
same length, but
possibly new values

filter(function,
list_of_inputs)
keeps each item where
the function is true.
function input: 1
argument (each item)
function output: boolean
filter output: list with
possibly fewer items,
but values are the same

reduce(function,
list_of_inputs)
successively combine
items.
function input: 2
arguments (current item,
and the previous result)
function output: type
should match the type of
each item
reduce output: usually a
“single” item

goal: transform a list, and return a new result

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 88 Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

that returns the value of "x * y"
with formal parameters x and y

A function

Must be a single expressionMust be a single expressionMust be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same domain, range, and behavior.

• Both functions have as their parent the environment in which they
were defined.

• Both bind that function to the name square.

• Only the def statement gives the function an intrinsic name.

•Every user-defined function has
a parent frame (often global)

•The parent of a function is the
frame in which it was defined

•Every local frame has a parent
frame (often global)

•The parent of a frame is the
parent of the function called

Evaluates to a function.
No "return" keyword!

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame.

3. Bind <name> to the function value in the current frame
(which is the first frame of the current environment).

When a function is called:
1. Add a local frame, titled with the <name> of the function being

called.
2. Copy the parent of the function to the local frame: [parent=<label>]
3. Bind the <formal parameters> to the arguments in the local frame.
4. Execute the body of the function in the environment that starts with

the local frame.

2

1

3

Nested
def

A function’s signature
has all the information
to create a local frame

from operator import floordiv, mod
def divide_exact(n, d):
 """Return the quotient and remainder of dividing N by D.

 >>> q, r = divide_exact(2012, 10)
 >>> q
 201
 >>> r
 2
 """
 return floordiv(n, d), mod(n, d)

Two return values,
separated by commas

Multiple assignment
to two names

Printed output:
1
4
9

False values so far: 0, False, '', None

Anything value that's not false is true.

>>> if 0:
... print('*')
>>> if 1:
... print('*')
*
>>> if abs:
... print('*')
*

>>> if 1 and 0:
... print('*')
>>> if 1 or 0:
... print('*')
*
>>> if 1 or 1/0:
... print('*')
*

Python object system:

When a class is called:
1.A new instance of that class is created:
2.The __init__ method of the class is called with the new object as

its first argument (named self), along with any additional arguments
provided in the call expression.

An account instance

Idea: All bank accounts have a balance and an account holder;
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

balance: 0

__init__ is called
a constructor

holder: 'Jim'

Method
invocation: One

object before the
dot and other

arguments within
parentheses

self should always
be bound to an
instance of the

Account class or a
subclass of Account

A new instance
is created by

calling a class

Dot expression

Call expression

>>> type(Account.deposit)
<class 'function'>
>>> type(a.deposit)
<class 'method'>

>>> Account.deposit(a, 5)
10
>>> a.deposit(2)
12

Function call:
all arguments

within
parentheses

 fib_n = label(left) + label(right)

Must be a single expression

