Tree Recursion

Announcements

Recursion Review

How to Know That a Recursive Implementation is Correct

Tracing: Diagram the whole computational process (only feasible for very small examples)
Induction: Check f(@), then check that f(n) is correct as long as f(n-1) ... f(0) are.

Abstraction: Assume f is correct (on simpler examples), then use it to implement f.

Recursive Process

1: Divide — Break the problem down into smaller parts.
2: Invoke — Make the actual recursive call.

3. Combine — Use the result of the recursive call in your result.

def fact(n):
"""Compute n factorial.

>>> fact(5)
120
>>> fact(0)
1
if n == 0 or n ==
return 1
else:
return fact(n-1) * n

Simple Problem: Palindrome

1: Divide — Break the problem down into smaller parts.
2: Invoke — Make the actual recursive call.

3. Combine — Use the result of the recursive call in your result.

all but_first = lambda word: word[1:] # hello — ello
all _but_last = lambda word: word[:-1] # hello —> hell

def palindrome(word):

>>> palindrome('c88c')

Tr.ue minnl

if len(word) <= 1:
return True

elif word[Q] == word[-1]:
return

else:
return False

Simple Problem: Palindrome

1: Divide — Break the problem down into smaller parts.
2: Invoke — Make the actual recursive call.

3. Combine — Use the result of the recursive call in your result.

all_but _first = lambda word: word[1:] # hello — ello
all _but_last = lambda word: word[:-1] # hello —> hell

def palindrome(word):
>>> palindrome(‘c88c')
Tr.ue minn
if len(word) <= 1:
return True
elif word[@] == word[-1]:
return palindrome(all_but_first(all_but_last(word)))
else:
return False

Tree Recursion

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one recursive call

n: o,1,2, 3, 4,5,6, 7, 8§, fa 35

fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, “ae 9,227,465

def fib(n):
if n ==
return O
elif n ==
return 1
else:
return fib(n-2) + fib(n-1)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

Go Bears!

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

2+4=6 -ae L 1 1 1
1+1+4=6 o e [X X X]
3+3=6 oee oee
1+2+3=6 o oo C I X)
1+1+1+3=6 ‘I' 1'.' 'I' ‘I"ll.‘l'
2+2+2=6 [X) [X) [X 1}
1+1+2+ 2= .I'D ‘I' ‘I"ll' (ll.‘l'
1+1+1+1+2=26 ‘I'i ‘I'i 1‘.' 1‘.' ‘IID‘I'
1+1+1+1+1+1=6 ‘I'i ‘I'i 1‘.' ‘I'i 1‘.' ‘I'

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in non-
decreasing order.

count_partitions(6, 4)

*Recursive decomposition: finding

simpler instances of the problem. '__.E
-Explore two possibilities: "'
-Use at least one 4 ','

-Don't use any 4 Jl

*Solve two simpler problems: "'
-count_partitions(2, 4) - ="
ccount_partitions(6, 3) == ===== === === é

*Tree recursion often involves
exploring different choices.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in

increasing order.

Recursive decomposition: finding
simpler instances of the problem.

Explore two possibilities:
Use at least one 4

Don't use any 4

Solve two simpler problems:
count_partitions(2, 4)
count_partitions(6, 3)

Tree recursion often involves
exploring different choices.

def count_partitions(n, m)
if n

return 1
elif n < 0:

return 0
elif m

return 0

else:
with m count partitions(n-m, m)
without m count partitions(n, m-1)
return with m + without m

(Demo)

pythontutor. com/compos ingprograns. html#code=def%20count_partitions28n,
ount_partitions%28n,

eturn%201

ount_partit

without_r
eturn%s20with_r

1520%28%201 B%201%20%28%20:

% thout

isplaysorigin=composingprograms. j

s&cum:

ult: ount_partitions%285,
ulative=false&py=3&rawInputLstISON=[]&curInstr=

0

Spring 2023 Midterm 2 Question 5

Definition. When parking vehicles in a row, a motorcycle takes up 1 parking spot and a car
takes up 2 adjacent parking spots. A string of length n can represent n adjacent parking
spots using % for a motorcycle, <> for a car, and . for an empty spot.

For example: '.%%.<><>' (Thanks to the Berkeley Math Circle for introducing this question.)

Implement count_park, which returns the number of ways that vehicles can be parked in n
adjacent parking spots for positive integer n. Some or all spots can be empty.

def count_park(n):
"""Count the ways to park cars and motorcycles in n adjacent spots.

>>> count_park(1l) # '.' or 's'
2
>>> count_park(2) # '..', '.%', '%.', '%%', or '<>'
5
>>> count_park(4) # some examples: '<><>', '.%%.', '%<>%', '%.<>!
29 —t — —
minn
if n < 0:
return 0
elif n ==
return 1
else:

return count_park(n-2) + count_park(n-1) + count_park(n-1)

