
Mutability

Announcements

Midterm Exam Next Week
(Sorry!)

But you’ll gonna do well!

Mutating Lists: Example functions of the list class

•append() adds a single element to a list:
s = [2, 3]
t = [5, 6]
s.append(4)
s.append(t)
t = 0

Try in PythonTutor.
•extend() adds all the elements in one list to another list:
s = [2, 3]
t = [5, 6]
s.extend(4) # 🚫 Error: 4 is not an iterable!
s.extend(t)
t = 0

Try in PythonTutor. (After deleting the bad line)

4

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Mutating Lists -- More Functions!

•list += [x, y, z] # just like extend.
• You need to be careful with this one! It modifies the list.
•pop() removes and returns the last element:
s = [2, 3]
t = [5, 6]
t = s.pop()

Try in PythonTutor.
•remove() removes the first element equal to the argument:
s = [6, 2, 4, 8, 4]
s.remove(4)

Try in PythonTutor.

5

https://stackoverflow.com/questions/2347265/why-does-behave-unexpectedly-on-lists
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Nested Lists

6

[[2, 4], [6, 8, 14], [6, 8, 14]]

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B%5B2,%204%5D,%20%5B6,%208%5D%5D%0At%20%3D%20%5Bs%5B1%5D,%20%5B6,%208%5D%5D%0As.append%28s%5B1%5D%29%0At%5B0%5D.append%2814%29%0At%5B1%5D.append%2816%29%0Aprint%28s%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Building Lists Using Append
def sums(n, m):
 """Return lists that sum to n containing positive numbers up to m that
 have no adjacent repeats, for n > 0 and m > 0.

 >>> sums(5, 1)
 []
 >>> sums(5, 2)
 [[2, 1, 2]]
 >>> sums(5, 3)
 [[1, 3, 1], [2, 1, 2], [2, 3], [3, 2]]
 >>> sums(5, 5)
 [[1, 3, 1], [1, 4], [2, 1, 2], [2, 3], [3, 2], [4, 1], [5]]
 >>> sums(6, 3)
 [[1, 2, 1, 2], [1, 2, 3], [1, 3, 2], [2, 1, 2, 1], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
 """
 result = []
 for k in range(1, ___________________): # k is the first number of a list
 for rest in ______________________:
 if rest[0] != k:
 result.append(___________) # build a list out of k and rest
 if n <= m:
 result.append([n])
 return result

7

min(m + 1, n)

[k] + rest

sums(n-k, m)

https://pythontutor.com/cp/composingprograms.html#code=result%20%3D%20%5B%5B1%5D,%20%5B2%5D,%20%5B3%5D%5D%0Afor%20k%20in%20range%281,%204%29%3A%0A%20%20%20%20for%20s%20in%20result%3A%0A%20%20%20%20%20%20%20%20if%20s%5B-1%5D%20!
%3D%20k%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20s.append%28k%29%0A%20%20%20%20%20%20%20%20%20%20%20%20result.append%28s%29%0Aprint%28result%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Mutation and Identity

Sameness and Change

• As long as we never modify objects, a compound object is just the totality of its pieces

• This view is no longer valid in the presence of change

• A compound data object has an "identity" in addition to the pieces of which it is composed

• A list is still "the same" list even if we change its contents

• Conversely, we could have two lists that happen to have the same contents, but are different

9

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

10

(Demo)

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B3,%205,%207%5D%0At%20%3D%20%5B9,%2011%5D%0As.append%28t%29%0As.extend%28t%29%0At%5B1%5D%20%3D%2013%0Aprint%28s%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

What is the meaning of is?

• is in Python means two items have the exact same identity

• Thus, a is b implies a == b

• Why? Each object has a function id() which returns its "address"

• The id is essentially an internal "locator" for that data in memory.

• Think of two houses which have the exact same floor plan, look the same, etc. The are
"the same house" but each have a unique address. (And thus are different houses)

• Think this is tricky? cool? amazing?
• Take CS61C (Architecture) and CS164 (Programming Languages)

11

Arrays vs Lists

Numpy Arrays Represent Fixed-Length Sequences of Numbers

import numpy as np
a = np.array([3, 4, 5, 6])
b = a + 1

13

s = [3, 4, 5, 6]
t = [x + 1 for x in s]

Numpy array advantages:

• Much faster repeated arithmetic

• More concise expressions

• Handles 2+ dimensions (matrix, etc.)

Numpy disadvantages:

• Fixed size: appending makes a new array

• Fixed type: [3, 4] and [[3, 4], [5, 6]]
but not [3, [4, 5]]

vs

(Speed Test Demo)

Guidance:

• Repeated calculations over long lists of
numbers should use array operations

• Collecting results as they are generated
should use a list

• We don’t use numpy in C88C

