Mutability

Announcements

Midterm Exam Next Week
(Sorry!)

But you’ll gonna do well!

Mutating Lists: Example functions of the list class

cappend () adds a single element to a list:

s = [2, 3]

t = [5, 6]

s.append(4)

s.append(t)

t =0

Try in PythonTutor.

sextend () adds all the elements in one list to another list:
s = [2, 3]

t = [5, 6]

s.extend(4) # © Error: 4 1is not an iterable!
s.extend(t)

t=20

Try in PythonTutor. (After deleting the bad line)

http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Mutating Lists -- More Functions!

*list += [x, y, z] # just like extend.
* You need to be careful with this one! It modifies the list.
*pop () removes and returns the last element:

s = [2, 3]
t = [5, 6]
t = s.pop()

Try in PythonTutor.

‘remove () removes the first element equal to the argument:
s = [6, 2, 4, 8, 4]
s.remove(4)

Try in PythonTutor.

https://stackoverflow.com/questions/2347265/why-does-behave-unexpectedly-on-lists
http://pythontutor.com/composingprograms.html
http://pythontutor.com/composingprograms.html

Nested Lists

Python 3.6
(known limitations)

s
ot

[[2, 4], [6, 8]]
[s[1], [6, 8]]

= 3 s.append(s[1l])

line that just executed
== next line to execute

L t[O0].append(14)
5 t[l].append(16)
print(s)

Edit this code

0

Print output (drag lower right corner to resize)

[[2, 4], [e6, 8, 14], [6, 8, 14]]

[<< First] [< Prev] [Next >] [Last >>]

Customize visualization

https://pythontutor. con/cp,

Step 3 0of 6

Frames Objects
Global frame list list
‘./N 0 1 0 1
S 2|4
t
list
0 1
6 | 8
list list
0 /|1 0 1
7| 6|8

unulative=truescurInstr=g&mode=displaysorigin=conposingprograns. j s&py=3&rawInputLstISON=4SB3%SD

&4

Building Lists Using Append

def sums(n, m):
"""Return lists that sum to n containing positive numbers up to m that
have no adjacent repeats, for n > 0 and m > 0.

>>> sums(5, 1)
[]
>>> sums(5, 2)
[[2; 1; 2]]
>>> sums(5, 3)
[[1, 3, 11, [2, 1, 21, [2, 31, I3, 211
>>> sums(5, 5)
(rx, 3, 11, I[1, 41, [2, 1, 2], [2, 31, [3, 21, [4, 1], [51]
>>> sums (6, 3)
(fra, 2, 1, 21, 1, 2, 31, I1, 3, 21, I[2, 1, 2, 11, [2, 1, 31, [2, 3, 11, I3, 1, 21, [3, 2, 1]]
result = [] .
for k in range(1, min(m + 1, n)): # k is the first number of a list

for rest in sums (n-k, m) :

if rest[0] !'= k:
result.append(Lk]l + rest) % pyild a list out of k and rest

if n <= m:
result.append([n])
return result

https://pythontutor. com/cp/compos ingprograms. html#code=result:

Mutation and Identity

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed

A list is still "the same" 1list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g
>>> b
>>> g
True

>>> Q.
>>> g

[10, 20]

>>> Db

[10, 20]

>>> g
True

>>> g
>>> b
>>> g
True

>>> Db.

>>> a

[10]

>>> Db

= [10]
= [10]

append(20)

[10, 20]

>>> Qg
False

|ldentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®> and <expl> evaluate to the same object

Equality
<expo> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

https://pythontutor. com/cp, ograms . html#c 15205, %207%5D%0A: 1 %2011%5D5%0A %281%29%0As . extends28t%29%0At5B1%5D%20%3D%2013%0Ap r int285%29&cumulat ive=t ruescurInst r=08mode=display&origin=composingprograms. js&py=3&rawInputLstJSON=%5B%5D

What is the meaning of is?

e is in Python means two items have the exact same identity

Thus, a is b implies a ==

Why? Each object has a function id() which returns its "address"

The id is essentially an internal "locator" for that data in memory.

e Think of two houses which have the exact same floor plan, look the same, etc. The are
"the same house" but each have a unique address. (And thus are different houses)

e Think this is tricky? cool? amazing?
 Take CS61C (Architecture) and CS164 (Programming Languages)

Arrays vs Lists

Numpy Arrays Represent Fixed-Length Sequences of Numbers

import numpy as np
a = np.array([3, 4, 5, 6]) VS
b a +1

Numpy array advantages:

* Much faster repeated arithmetic

* More concise expressions

- Handles 2+ dimensions (matrix, etc.)
Numpy disadvantages:

- Fixed size: appending makes a new array

- Fixed type: [3, 4] and [[3, 4], [5, 6]]
but not [3, [4, 511

[3, 4, 5, 6]
[x + 1 for x in s]

‘—'-
I

(Speed Test Demo)
Guidance:

- Repeated calculations over long lists of
numbers should use array operations

« Collecting results as they are generated
should use a list

* We don’t use numpy in C88C

