
Objects

Announcements

Midterm Logistics:
https://edstem.org/us/courses/74610/discussion/6310007

https://edstem.org/us/courses/74610/discussion/6310007

Studying for the Midterm

* Do a few practice problems.

* Don’t time yourself at first.

* Go by topic rather than by exam

* Think through your hw/lab/projects.

4

Class Statements

Classes

A class describes the behavior of its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('C88C')
>>> a.holder
‘C88C'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts share a withdraw
method and a deposit method

6

balance and
holder are
attributes

deposit and
withdraw are

methods

The Account Class

Methods are functions defined in a class statement

class Account:

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

7

self is the instance of the Account class on which deposit was invoked: a.deposit(10)

__init__ is a special method name for the function that constructs an Account instance

>>> a = Account(‘C88C')
>>> a.holder
'C88C'
>>> a.balance
0
>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'(Demo)

String Representations

String Representations

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

9

>>> from fractions import Fraction
>>> half = Fraction(1, 2)
>>> str(half)
'1/2'
>>> repr(half)
'Fraction(1, 2)'

(Demo)

Expressions, Values, & Types (Classes)

Sample Lab Question: Email
A Client can send an Email to its Server.

The Server then delivers it to the inbox
of another Client.

To achieve this, a Server has a dictionary
called clients that maps the name of the
Client to the Client instance.

11

class Email:
 def __init__(self, msg, sender, recipient_name):
 self.msg = msg
 self.sender = sender
 self.recipient_name = recipient_name

class Server:
 def __init__(self):
 self.clients = {}

 def send(self, email):
 # Append the email to the inbox of the client it is addressed to.

 ...

class Client:
 def __init__(self, server, name):
 self.inbox = []
 self.server = server
 self.name = name
 ...
 ...

selfself.clientsself.clients[email.recipient_name]self.clients[email.recipient_name].inbox.append(email)

Server dict Client list

self.clients[email.recipient_name].inbox

Class Practice

Spring 2023 Midterm 2 Question 2(a)
class Letter:
 def __init__(self, contents):

 self.contents = contents

 def send(self):

 if self.sent:

 print(self, 'was already sent.')

 else:
 print(self, 'has been sent.')

 return _____________________________

 def __repr__(self):
 return self.contents

13

 """A letter receives an all-caps reply.

 >>> hi = Letter('Hello, World!')
 >>> hi.send()
 Hello, World! has been sent.
 HELLO, WORLD!
 >>> hi.send()
 Hello, World! was already sent.
 >>> Letter('Hey').send().send()
 Hey has been sent.
 HEY has been sent.
 HEY
 """

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was
sent, and if it was, returns the reply, which
is a new Letter instance with the same
contents, but in all caps.
Hint: 'hi'.upper() evaluates to 'HI'.

self.sent = False

self.sent = True

Letter(self.contents.upper())

Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter):

 number = 0

 def __init__(self, contents):

 super().__init__(contents)

 def __repr__(self):

 return '#' + ___________________

14

 """A numbered letter has a different
 repr method that shows its number.

 >>> hey = Numbered('Hello, World!')
 >>> hey.send()
 #0 has been sent.
 HELLO, WORLD!
 >>> Numbered('Hi!').send()
 #1 has been sent.
 HI!
 >>> hey
 #0
 """

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears in its repr
string. Assume Letter is implemented correctly.

self.number = Numbered.number

Numbered.number += 1

str(self.number)

