Objects

Announcements

Midterm Logistics:
https://edstem.org/us/courses/74610/discussion/6310007

https://edstem.org/us/courses/74610/discussion/6310007

Studying for the Midterm

* Do a few practice problems.
* Don’t time yourself at first.
* Go by topic rather than by exam

* Think through your hw/lab/projects.

Class Statements

Classes

A class describes the behavior of its instances

Idea: All bank accounts have a balance and >>> a = Account('C88C")
an account holder; the Account class should >>> a.holder)
add those attributes to each newly created ‘C88C' balance and
instance >>> a.balance holder are

0 attributes

. . it(1 deposit and

Idea: All bank accqunts share a withdraw ;;> a.deposit(15) wigzdraw are
method and a deposit method ~~> a.withdraw(10) methods

5

>>> a.balance

5

>>> a,withdraw(10)
'Insufficient funds'

The Account Class
class Account:

[__init__ is a special method name for the function that constructs an Account instance]

def

V

__init_ (self, account_holder):

self.balance = 0
self.holder = account_holder

[: self is the

instance of the Account class on which deposit was invoked: a.deposit(10) :)

def

def

deposit(sg{f, amount) :
self.balance = self.balance + amount
return self.balance
withdraw(self, amount):
if amount > self.balance:

return 'Insufficient funds'
self.balance = self.balance — amount
return self.balance

Methods are functions defined in a class statement

(Demo)

>>> a = Account(‘C88C"')
>>> a.holder

'C88C'

>>> a.balance

0

>>> a.deposit(15)

15

>>> a,withdraw(10)
5

>>> a.balance

5

>>> a,withdraw(10)
'Insufficient funds'

String Representations

String Representations

In Python, all objects produce two string representations:
The str is legible to humans

*The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

>>> from fractions import Fraction
>>> half = Fraction(1, 2)

>>> str(half)

'1/2"

>>> repr(half)

'Fraction(1, 2)'

(Demo)

Expressions, Values, & Types (Classes)

Sample Lab Question: Email

class Email:

def __init__ (self, msg, sender, recipient_name):

self.msg = msg
self.sender = sender

self.recipient_name = recipient_name

class Server:
def __init_ (self):
self.clients = {}

def send(self, email):

A Client can send an Email to its Server.

The Server then delivers it to the inbox
of another Client.

To achieve this, a Server has a dictionary
called clients that maps the name of the
Client to the Client instance.

Append thé émail to the inbox of the client it is addressed to.

dict

{ Server

Client

self,clients[email.recipient_name]. inbox.append(email)

class Client:
def __init__ (self, server, name):
self.inbox = []
self.server = server
self.name = name

Class Practice

Spring 2023 Midterm 2 Question 2(a)

class Letter:
def init (self, contents):

self.contents = contents

Implement the Letter class. A Letter has two
instance attributes: contents (a str) and sent
(a bool). Each Letter can only be sent once.
The send method prints whether the letter was

self.sent = False sent, and if it was, returns the reply, which

is a new Letter instance with the same

contents, but in all caps.

def send(self): Hint:

if self.sent:
print(self, 'was already sent.')

else:
print(self, 'has been sent.')

self.sent = True

return Letter(self.contents.upper())

def __repr__(self):
return self.contents

"hi'.upper() evaluates to 'HI'.

"nA letter receives an all-caps reply.

>>> hi = Letter('Hello, World!"')
>>> hi.send()

Hello, World! has been sent.
HELLO, WORLD!

>>> hi.send()

Hello, World! was already sent.
>>> Letter('Hey').send().send()
Hey has been sent.

HEY has been sent.

HEY

Spring 2023 Midterm 2 Question 2(b)

class Numbered(Letter):
number = 0
def init (self, contents):

super().__init__ (contents)

self.number = Numbered.number

Numbered.number += 1

def __repr__(self):

return '#' 4+ str(self.number)

Implement the Numbered class. A Numbered letter
has a number attribute equal to how many
numbered letters have previously been
constructed. This number appears in its repr
string. Assume Letter is implemented correctly.

""UA numbered letter has a different
repr method that shows its number.

>>> hey = Numbered('Hello, World!"')
>>> hey.send()

#0 has been sent.

HELLO, WORLD!

>>> Numbered('Hi!').send()

#1 has been sent.

HI!

>>> hey

#0

