
Attributes

Announcements

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

4

(Demo)

Attribute Lookup

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

6

Both instances and classes have attributes that can be looked up by dot expressions

Discussion Question: Where's Waldo?

For each class, write an expression with no quotes or + that evaluates to 'Waldo'

7

class Town:
 def __init__(self, w, aldo):
 if aldo == 7:
 self.street = {self.f(w): 'Waldo'}

 def f(self, x):
 return x + 1

class Beach:
 def __init__(self):
 sand = ['Wal', 'do']
 self.dig = sand.pop

 def walk(self, x):
 self.wave = lambda y: self.dig(x) + self.dig(y)
 return self

>>> Town(1, 7).street[2]
'Waldo'

>>> Beach().walk(0).wave(0)
'Waldo'

Reminder: s.pop(k)
removes and returns
the item at index k

Class Attributes

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

9

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'
>>> Clown
<class '__main__.Clown'>

class <name>:
 <suite>

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

10

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

Bound Methods

Class
Attributes Functions

Terminology: Attributes, Functions, and Methods

All objects have attributes, which are name-value pairs

A class is a type (or category) of objects

Classes are objects too, so they have attributes

Instance attribute: attribute of an instance

Class attribute: attribute of the class of an instance

Methods

Functions are objects

Bound methods are also objects: a function
that has its first parameter "self" already
bound to an instance

Dot expressions evaluate to bound methods for
class attributes that are functions

Terminology: Python object system:

12

<instance>.<method_name>

Advice…

Refer to class attributes by the class name whenever practical.

e.g.

>>> Account.interest

don’t write:

>>> tom_account.interest

Next week, we’ll break this pattern a little bit more…

13

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1007)
2018

14

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

Attribute Assignment

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class
attributes

0.04

interest: 0.08

0.05

16

Instance
attributes of
jim_account

Instance
attributes of
tom_account

