
Inheritance

Announcements

Announcements

3

• Midterm grades to be released Wed 3/19 (tentative)

• OH schedule updates
• All 9 am OH canceled starting today Mon 3/17
• More updates to come (stay tuned on Ed)

• [EC opportunity] Mid-semester survey to be released soon
• If 75% or more of the class fills out the survey by Mon 3/31, everyone will

receive 1 pt of EC

• Feedback: go.c88c.org/rebecca-lec or scan QR code

https://go.c88c.org/rebecca-lec

Inheritance Basics

Why inheritance?

5

• The world can be represented by objects, and objects can be related
• DRY: Don’t Repeat Yourself
• Ants project
• Fun fact: Our mascot is named InheritAnt!

Inheritance syntax

6

class <class_name>(<superclass_name>):
 <suite>

Examples:

class Dog(Animal):
 …

class Cat(Animal):
 …

Terminology

7

• superclass = parent class = base class
• subclass = child class

Overriding methods and attributes

8

class Animal:
 def __init__(self, name):
 self.name = name

 def make_noise(self):
 print(f'{self.name} made a noise!')

class Dog(Animal):
 def __init__(self, name, owner):
 super().__init__(name)
 self.owner = owner

 def make_noise(self):
 print('Woof!')

class Cat(Animal):
 def __init__(self, name, owner):
 super().__init__(name)
 self.owner = owner

 def make_noise(self):
 print('Meow!')

>>> animal = Animal('Bessie')
>>> animal.name
'Bessie'
>>> animal.owner
AttributeError: 'Animal' object has no
attribute 'owner'
>>> animal.make_noise()
Bessie made a noise!
>>> dog = Dog('Boba', 'Upasana')
>>> dog.name
'Boba'
>>> dog.owner
'Upasana'
>>> dog.make_noise()
Woof!
>>> cat = Cat('Rigatoni', 'Andie')
>>> cat.make_noise()
Meow!
>>> Cat.make_noise()
TypeError: make_noise() missing 1 required
positional argument: 'self'
>>> Cat.make_noise(cat)
Meow!

Overriding methods and attributes

9

class Animal:
 def __init__(self, name):
 self.name = name

 def make_noise(self):
 print(f'{self.name} made a noise!')

class Dog(Animal):
 def __init__(self, name, owner):
 super().__init__(name)
 self.owner = owner

 def make_noise(self):
 print('Woof!')

class Cat(Animal):
 def __init__(self, name, owner):
 super().__init__(name)
 self.owner = owner

 def make_noise(self):
 print('Meow!')

Q: What additional superclass might we
want to make to avoid repeating ourselves?

A: Pet class that inherits from Animal and
includes an owner attribute. Then Dog and
Cat can inherit from Pet!

Lookup

Lookup rules

11

Instance variable lookup
1. Lookup name in instance
2. Lookup name in class that instance belongs to
3. Lookup in parent class, if one exists (recursively)
4. Error if still not found

Class variable lookup
1. Lookup in class
2. Look up in parent class, if one exists (recursively)
3. Error if still not found

Lookup exercise

12

class A:
 foo = 0
 def __init__(self, foo, bar):
 self.foo = foo + A.foo
 A.foo += 1
 self.bar = bar

class B(A):
 foo = 5
 def __init__(self, bar):
 super().__init__(B.foo, bar)

>>> first = A(2, 3)
>>> first.foo
2
>>> first.bar
3
>>> A.foo
1

>>> second = A(2, 3)
>>> second.foo
3
>>> second.bar
3
>>> A.foo
2

>>> third = B(2, 3)
TypeError: __init__() takes 2 positional
arguments but 3 were given
>>> third = B(3)
>>> third.foo
7
>>> third.bar
3
>>> B.foo
5
>>> A.foo
3
>>> third.foo = 100
>>> third.foo
100
>>> B.foo
5

type vs. isinstance

13

class C:
 pass

class D(C):
 pass

>>> first = C()
>>> type(first)
<class '__main__.C'>
>>> second = D()
>>> type(second) == D
True
>>> isinstance(first, C)
True
>>> isinstance(second, C)
True
>>> isinstance(second, D)
True

Applications / System Design

Inheritance vs. Composition

15

Inheritance: is-a relationship

Composition: has-a relationship

Let’s design Spotify!

16

Q: What are some objects we might want to define?

A: User, Artist, Song, Playlist, Album, etc.

Let’s design Spotify!

17

Q: How are these objects related to each other?
A:
• An Artist is a User
• An Artist has many Songs
• A Playlist has many Songs
• An Album is a Playlist
• A User has many Playlists
• An Artist has many Albums
• etc.

Demo: Design Spotify

Multiple Inheritance

Method Resolution Order (MRO) with diamond inheritance

20

class Grandparent:
 def where_am_i(self):
 print('In grandparent')

class Parent1(Grandparent):
 def where_am_i(self):
 super().where_am_i()
 print('In parent 1')

class Parent2(Grandparent):
 def where_am_i(self):
 super().where_am_i()
 print('In parent 2')

class Child(Parent1, Parent2):
 def where_am_i(self):
 super().where_am_i()
 print('In child')

Child

Parent1 Parent2

Grandparent

Python looks up attributes/methods from:
1. Current class
2. Parent classes, from left to right
3. Grandparent class

Method Resolution Order (MRO) with diamond inheritance

21

class Grandparent:
 def where_am_i(self):
 print('In grandparent')

class Parent1(Grandparent):
 def where_am_i(self):
 super().where_am_i()
 print('In parent 1')

class Parent2(Grandparent):
 def where_am_i(self):
 super().where_am_i()
 print('In parent 2')

class Child(Parent1, Parent2):
 def where_am_i(self):
 super().where_am_i()
 print('In child')

>>> g = Grandparent()
>>> p1 = Parent1()
>>> p2 = Parent2()
>>> c = Child()
>>> g.where_am_i()
In grandparent
>>> p1.where_am_i()
In grandparent
In parent 1
>>> p2.where_am_i()
In grandparent
In parent 2
>>> c.where_am_i()
In grandparent
In parent 2
In parent 1
In child
>>> Child.mro()
[<class '__main__.Child'>,
<class '__main__.Parent1'>,
<class '__main__.Parent2'>,
<class '__main__.Grandparent'>,
<class 'object'>]

Python looks up attributes/methods from:
1. Current class
2. Parent classes, from left to right
3. Grandparent class

