lterators

Announcements

lterators (Bonus Material)

Ilterators

A container can provide an iterator that provides access to its elements in order

iter(iterable): Return an iterator over the elements

of an iterable value v
>>> s = [3, 4, 5]
next(iterator): Return the next element in an iterator z:: ne;t?t?r(s)
3
>>> next(t)
4

>>> u = iter(s)
>>> next(u)

3

>>> next(t)

5

>>> next(u)

4

(Demo)

Discussion Question

What will be printed?
v

[1, 2, 3]

[a, 4]

iter(a)

C

print(next(c))
print(next(d))
print(b)

o N T

Higher Order Functions, Revisited
Map, Filter

(Demo)

Functions that return iterables

map, filter, zip

These objects are not sequences.
They are iterables. A "stream" of data we can iterate over.

Why?
Can't directly slice into them.
Don't know their length

If we want to see all the elements at once, we need to explicitly collect them, by
using list() or tuple(), or use next()

data = map(lambda x: x*x, range(5))
Iterate with for loops
for num in data:

print(num)
data = map(lambda x: x*xx, range(5))
next(data) # returns 0
next(data) # returns 1 ..

next(data) # eventually raises StopIteration error

How do we build iterators?

What's an lterator? |

iterator

An object representing a stream of data. Repeated calls to the
iterator's __next__ () method (or passing it to the built-in function
next ()) return successive items in the stream. When no more data
are available a StopIteration exception is raised instead.

iterable

An object capable of returning its members one at a time. Examples
of include all sequence types and objects of any classes you define
with an __iter__() method or witha __getitem__() method
that implements sequence semantics.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/glossary.html#term-iterator

Next element in generator iterable

‘Iterables work because they implement some "magic methods" on
them. We saw magic methods when we learned about classes,

‘e.g.,_init_, _repr__and _str__

‘The first one we see for iterablesis _ _next _

‘iter () -transforms a sequence into an iterator

- Usually this is not necessary, but can be useful.

lterators: The 1ter protocol |

In order to be iterable, a class must implement the iter protocol

‘The iterator objects themselves are required to support the
following two methods, which together form the iterator protocol:

-__iter__: Return the iterator object itself. This is required to allow
both containers and iterators to be used with the for and in

statements.
This method returns an iterator object (which can be self)

« next_ : Return the next item from the container. If there are no
further items, raise the Stoplteration exception.

https://docs.python.org/3/c-api/iter.html

The lter Protocol In Practice

Classes get to define how they are iterated over by defining these
methods

- containers (objects like lists, tuples, etc) typically define a
Container class and a separate Containterlterator class.

- Lists, Ranges, etc are not directly iterators
* We cannot call next() on them.
- We can all iter(list), iter(range), etc if needed.

- However, they implement an __iter__ method, and
list_-diterator, range_iterator class, etc.

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Making Our Own Range

class myrange:
def __init__(self, n, step=0):
self.i =0
self.n = n
self.step = step

def __+diter__(self):
return self
def __next__(self):
if self.i < self.n:
current =
self.i += ____ ____________
return current
else:
raise StopIteration()

Making Our Own Range

class myrange:
def __init__(self, n, step=0):
self.i =0
self.n = n
self.step = step

def __+diter__(self):
return self
def __next__(self):
if self.i < self.n:
current = self.1
self.i += ____ ____________
return current
else:
raise StopIteration()

Making Our Own Range

class myrange:
def __init__(self, n, step=0):
self.i = 0
self.n = n
self.step = step

def __+diter__(self):
return self
def __next__(self):
if self.i < self.n:
current = self.1
self.i += self.step
return current
else:
raise StopIteration()

Range HOF!

What if range() accepted a HOF argument?

class rangehof:
>>> X = rangehof(@, 3, lambda x: x+1)
>>> 1list(x)
[1, 2, 3]

ain

def __next__(self):
if self.i < self.n:

current =

self.i =

return current
else:

raise StopIteration()

What if range() accepted a HOF argument?

class rangehof:
>>> X = rangehof(@, 3, lambda x: x+1)
>>> list(x)
[1, 2, 3]

ann

. def __init__ (self, start, stop, function):

gelf.function = function
def __next_ (self):

if self.i < self.n:
current = self.function(self.1i)
self.i = current
return current

else:
raise StopIteration()

Optional Linked List Practice

Linked List Mutation

To change the contents of a linked list, assign to first and rest attributes

Example: Append x to the end of non-empty s

>>> t = Link(3, Link(4, Link(5)))
>>> append(t, 6)

>>> t

Link(3, Link(4, Link(5, Link(6))))

Global Frame

t{gﬁ ‘ 3| —/— 4| —/ 5 //4:————+ 6 ,////

fl: append p=G

-
«[o

S = s.rest

s.rest = Link(x)

Recursion and Iteration

Many linked list processing functions can be written both iteratively and recursively

Recursive approach: Iterative approach:
e What recursive call do you make? * Describe a process that solves the problem.
 What does this recursive call do/return? * Figure out what additional names you need
e How is this result useful in solving the to carry out this process.
problem? * Implement the process using those names.

def append(s, x): def append(s, x):

"""Append x to the end of non-empty s. """Append x to the end of non-empty s.

>>> append(s, 6) # returns None! >>> append(s, 6) # returns None!

>>> print(s) >>> print(s)

<345 6> <345 6>

if S.rest is not Link.empty while S.rest is not Link.empty

append(s.rest , X) S = s.rest

else: s.rest = Link(x)

s.rest = Link(x)

Example: Pop

Implement pop, which takes a linked list s and positive integer i. It removes and returns
the element at index i of s (assuming s.first has index 0).

def pop(s, i):
"""Remove and return element i from linked list s for positive 1i.
>>> t = Link(3, Link(4, Link(5, Link(6))))
>>> pop(t, 2)
5
>>> pop(t, 2)
6
>>> pop(t, 1)

Global Frame

4 t, 1| 3 —| 4
>>> T

Ul
|

v

o

Link(3)
i fl: pop p=G /
assert 1 > 0 and i < length(s) P

for x in range(i-1),

2
s = s.rest 1
result = s.rest.first result |2
s.rest = s.rest.rest

return result

