
Trees

Announcements

The Tree Class

Tree-Structured Data

Objects with parts (such as an instance with multiple attributes) can have parts of parts.

In the world: a person has hands, each hand has fingers, & each finger has joints.

In programs: a dataset has data tables, each table has columns, each column has numbers.

When the parts have the same type as the whole object, the object is tree structured.

In the world: an employee has reports, which are employees (& might have reports as well).

In programs: an expression has sub-expressions, which are expressions.

Recursion is commonly used to process tree-structured data.

4

Tree Terminology

5

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

5

8

3

2 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 4

3 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Nodes

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

Path

 or Root Node (2 + 1) + (1 + (3 + 1))

(2 + 1) + (1 + abs(-3) + 1)

5

8

3

2 1 1 3 1

-3

The Tree Class

• A tree has a root label
and a list of branches

• Each branch is a tree

6

t = Tree(3, [Tree(4),
 Tree(5, [Tree(7),
 Tree(6)]),
 Tree(2, [Tree(1)])])

5

7

3

4

6

2

1

class Tree:
 """A tree has a label and a list of branches."""
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

>>> t
Tree(3, [Tree(4), Tree(5, [Tree(7), Tree(6)]), Tree(2, [Tree(1)])])
>>> print(t)
3
 4
 5
 7
 6
 2
 1

Processing Trees

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

8

def count_leaves(t):

 """Count the leaves of a tree."""

 if t.is_leaf()

 return 1

 else:

 branch_counts = [count_leaves(b) for b in t.branches]

 return sum(branch_counts)

Creating Trees

A function that creates a tree from another tree is typically also recursive

9

def increment(t):
 """Return a tree like t but with all labels incremented."""
 return Tree(t.label + 1, [increment(b) for b in t.branches])

def increment_leaves(t):
 """Return a tree like t but with leaf labels incremented."""
 if t.is_leaf():
 return Tree(t.label + 1)
 else:
 bs = [increment_leaves(b) for b in t.branches]
 return Tree(t.label, bs)

Example: Counting Paths in a Tree

Count Paths that have a Total Label Sum
def count_paths(t, total):
 """Return the number of paths from the root to any node in tree t
 for which the labels along the path sum to total.

 >>> t = Tree(3, [Tree(-1), Tree(1, [Tree(2, [Tree(1)]), Tree(3)]), Tree(1, [Tree(-1)])])
 >>> count_paths(t, 3)
 2
 >>> count_paths(t, 4)
 2
 >>> count_paths(t, 5)
 0
 >>> count_paths(t, 6)
 1
 >>> count_paths(t, 7)
 2
 """
 if _________________:

 found = ________________

 else:

 return found + _________([__________________________________ for b in t.branches])

t.label == total

1

found = 0

sum count_paths(b, total - t.label)

2

3

-1 11

-1

1

3

