
Designing Functions

Announcements

SQL

Conceptual Order of Execution

4

3737223
SELECT S
FROM R1, R2, …
WHERE C1

3
1
2

SQL simple “Order of Execution”

5

A SELECT FROM WHERE (SFW) query is
the most standard SQL query structure
that extract records from a relation.

Order of execution:
1. FROM: Fetch the tables and compute the cross product of R1, R2, …
2. WHERE: “Row filter.” For each tuple from step 1,

keep only those that satisfy condition C1
3. SELECT: add to output based on S

3737223
SELECT S
FROM R1, R2, …
WHERE C1

3
1
2

“SFW” Examples

6

A SELECT FROM WHERE (SFW) query is
the most standard SQL query structure
that extract records from a relation.

SELECT *
FROM cones
WHERE price > 4;

SELECT flavor, price,
price * 2 as tariff_price
FROM cones;

Select some columns, possibly apply
transformations to the data.

Return just the ice cream cones which
have a price > $4.00

3737223

SELECT S
FROM R1, R2, …
WHERE C1
GROUP BY A1, A2, …
HAVING C2

Order of execution:
1. FROM: Fetch the tables and compute the cross product of R1, R2, …
2. WHERE: “Row filter.” For each tuple from step 1,

keep only those that satisfy condition C1
3. GROUP BY: A1, A2, …

For each group, compute all aggregates needed in C2 and S
4. HAVING: For each group, check if C2 is satisfied
5. SELECT: add to output based on S

SQL “Order of Execution”

5
1
2
3
4

7

Aggregations happen after filtering.

(Review-ish) Python Operations as Data Transformations

8

Function Action Input arguments Input Fn. Returns Output

map Transform every item 1 (each item)
"Anything", a new
item

List: same length,
but possibly new
values

filter Return a list with
fewer items

1 (each item) A Boolean
List: possibly fewer
items, values are the
same

reduce "Combine" items
together

2 (current item, and
the previous result)

Type should
match the type
each item

A "single" item

Python Operations as Data Transformations

9

Function SQL satement SQL Data “Paraments” Output

map SELECT values in a row
Functions and
column selectors

A row with valued
modified, e.g. adding,
selecting etc.

filter WHERE values in a row
Boolean operations
based on columns

The row or possibly no
rows.

reduce GROUP BY A table, multiple rows
Column selectors —
group by matches on
equality.

A set of groups.

Joins Practice

Returning to Ice Cream Cones

How many dollars (“Total Sales”) did each salesperson sell?

11

JOINing on cone id

id flavor color price

1 strawberry pink 3.5

2 chocolate brown 4.75

cones:

SELECT ______________________ AS “Total Sales”

 FROM ______________________

 WHERE ______________________

 GROUP BY cashier;

Cashier, SUM(pirce)

cones c, sales s

s.cone_id = c.id

Cashier Total Sales
Ben $9.75

Jerry …

Baskin …

id cashier cone_id

1 Baskin 2

10 Jerry 6

sales:

http://c.id

Discussion Question

What's the maximum difference between leg count for two animals with the same weight?

12

SELECT _____________________ AS difference
 FROM animals AS a, animals AS b
 __________________________;

MAX(a.legs - b.legs)

WHERE a.weight = b.weight

Approach #1: Consider all pairs of animals.

Approach #2: Group by weight.

kind legs weight
dog 4 20
cat 4 10

ferret 4 10
parrot 2 6

penguin 2 10
t-rex 2 12000

animals:

SELECT ______________________ AS difference

 FROM ______________________

 GROUP BY weight

 ORDER BY difference DESC

 LIMIT 1;

MAX(legs) - MIN(legs)

animals
difference

2

Discussion Question

What are all the kinds of animals that have the maximal number of legs?

13

sqlite> SELECT * FROM animals WHERE legs = MAX(legs);
Parse error: misuse of aggregate function MAX()

CREATE TABLE m AS SELECT ______________________ FROM animals;
SELECT kind FROM _____________ WHERE legs = max_legs;

Approach #1: Give the maximum number of legs a name.

MAX(legs) AS max_legs
animals, m

Approach #2: For each kind of animal, compare its legs to the maximum legs by grouping.

kind legs weight
dog 4 20
cat 4 10

ferret 4 10
parrot 2 6

penguin 2 10
t-rex 2 12000

animals:

SELECT ______ FROM animals AS a, animals AS b GROUP BY a.kind ____________________________;a.kind HAVING a.legs = MAX(b.legs)

Implementing Functions

def nearest_prime(n):
 """Return the nearest prime number to n.
 In a tie, return the larger one.

 >>> nearest_prime(8)
 7
 >>> nearest_prime(11)
 11
 >>> nearest_prime(21)
 23
 """
 k = 0
 while True:
 if _______________:
 return _______
 if _______:
 k = -k
 else:
 k = ________

A Slight Variant of Fall 2022 Midterm 1 3(b)

Implement nearest_prime, which takes an integer n above 5. It returns the nearest prime
number to n. If two prime numbers are equally close to n, return the larger one. Assume
is_prime(n) is implemented already.

15

Read the description

Verify the examples & pick a
simple one

Read the template

Annotate names with values from
your chosen example

Write code to compute the result

Did you really return the right
thing?

Check your solution with the
other examples

From discussion:

Describe a process (in
English) that computes the
output from the input
using simple steps.

Figure out what additional
names you'll need to carry
out this process.

Implement the process in
code using those
additional names.

Example: n is 21

23
is_prime(23)

keep
looking
for a
prime

def nearest_prime(n):
 """Return the nearest prime number to n.
 In a tie, return the larger one.

 >>> nearest_prime(8)
 7
 >>> nearest_prime(11)
 11
 >>> nearest_prime(21)
 23
 """
 k = 0
 while True:
 if _______________:
 return _______
 if _______:
 k = -k
 else:
 k = ________

A Slight Variant of Fall 2022 Midterm 1 3(b)

Implement nearest_prime, which takes an integer n above 5. It returns the nearest prime
number to n. If two prime numbers are equally close to n, return the larger one. Assume
is_prime(n) is implemented already.

16

From discussion:

Describe a process (in
English) that computes the
output from the input
using simple steps.

Figure out what additional
names you'll need to carry
out this process.

Implement the process in
code using those
additional names.

Example: n is 21

keep
looking
for a
prime

Process:
Check whether a number
is prime in this order:
- original n
- n + 1
- n - 1
- n + 2
- n - 2
- n + 3
- n - 3
- n + 4
...

All of these look like
n + k for various k

(Demo)

is_prime(n + k)
n + k

k > 0

-k + 1

23
is_prime(23)

Designing Functions

How to Design Programs

From Problem Analysis to Data Definitions
Identify the information that must be represented and how it is represented in the chosen
programming language. Formulate data definitions and illustrate them with examples.

Signature, Purpose Statement, Header
State what kind of data the desired function consumes and produces. Formulate a concise
answer to the question what the function computes. Define a stub that lives up to the
signature.

Functional Examples
Work through examples that illustrate the function’s purpose.

Function Template
Translate the data definitions into an outline of the function.

Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.

Testing
Articulate the examples as tests and ensure that the function passes all. Doing so
discovers mistakes. Tests also supplement examples in that they help others read and
understand the definition when the need arises—and it will arise for any serious program.

18https://htdp.org/2018-01-06/Book/

https://htdp.org/2018-01-06/Book/

Tree Processing

Tree-Structured Data

20

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

A tree can contains other trees:

[5, [6, 7], 8, [[9], 10]]

(+ 5 (- 6 7) 8 (* (- 9) 10))

(S
 (NP (JJ Short) (NNS cuts))
 (VP (VBP make)
 (NP (JJ long) (NNS delays)))
 (. .))

 Midterm 1
 Midterm 2

Tree processing often involves
recursive calls on subtrees

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

21

def smalls(t):
 """Return a list of the non-leaf nodes in t that are smaller than all their descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return t.label
 else:

 return min(...)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

https://htdp.org/2018-01-06/Book/part_one.html#(part._sec~3adesign-func)

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

22

def smalls(t):
 """Return a list of the non-leaf nodes in t that are smaller than all descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return __
 else:
 smallest = ______________________________________
 if __:

 return min(smallest, t.label)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

t.label

t.label < smallest
result.append()t

smallest label
in a branch of t

min([process(b) for b in t.branches])

Fall 2022 Midterm 2 Question 4(b)
A hydra is a Tree with a special structure. Each node has 0 or 2 children. All leaves are heads
labeled 1. Each non-leaf body node is labeled with the number of leaves among its descendants.

23

Implement chop_head(hydra, n), which takes a hydra and
a positive integer n. It mutates the hydra by replacing
the nth head from the left with two new adjacent heads
& updating all ancestor labels.
def chop_head(hydra, n):
 assert n > 0 and n <= hydra.label
 if hydra.is_leaf():

 else:

 left, right = hydra.branches
 if _______________:
 chop_head(right, _______________)
 else:
 chop_head(left, n)

hydra.label = 2
hydra.branches = [Tree(1), Tree(1)]

hydra.label += 1

n > left.label
n - left.label

Signature: (hydra, int) -> None

Mutate the hydra

nth head

Update ancestor

