
Conclusion

Announcements

CONGRATULATIONS!!

Is Your Brain Full Yet?

•Data: values, literals, operations,
•Functions
•Variables
•List, Tuples, Dictionaries
•Function Definition Statement
•Conditional Statement
•Iteration: list comp, for, while
•Lambda function expr.
•Higher Order Functions

•Higher order function patterns
•Map, Filter, Reduce

•Recursion
•Abstract Data Types
•Mutation
•Class & Inheritance
•Exceptions
•Iterators & Generators
•SQL / Declarative Programming

Course Staff

Designing Functions

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Approaching The Exam

• Skim the topics (~1 min)
• Handle the "easy"(est) questions first
• Read the whole question first!
• Read the text
• Read the doctests!
• What techniques might be applicable?
• Pattern matching is OK

• Draft a solution on scratch paper!
• Write yourself notes

How to Design Programs

From Problem Analysis to Data Definitions
Identify the information that must be represented and how it is represented in the chosen
programming language. Formulate data definitions and illustrate them with examples.

Signature, Purpose Statement, Header
State what kind of data the desired function consumes and produces. Formulate a concise
answer to the question what the function computes. Define a stub that lives up to the
signature.

Functional Examples
Work through examples that illustrate the function’s purpose.

Function Template
Translate the data definitions into an outline of the function.

Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.

Testing
Articulate the examples as tests and ensure that the function passes all. Doing so
discovers mistakes. Tests also supplement examples in that they help others read and
understand the definition when the need arises—and it will arise for any serious program.

10https://htdp.org/2018-01-06/Book/

https://htdp.org/2018-01-06/Book/

Tree Processing

Tree-Structured Data

12

class Tree:
 def __init__(self, label, branches=[]):
 self.label = label
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

A tree can contains other trees:

[5, [6, 7], 8, [[9], 10]]

(+ 5 (- 6 7) 8 (* (- 9) 10))

(S
 (NP (JJ Short) (NNS cuts))
 (VP (VBP make)
 (NP (JJ long) (NNS delays)))
 (. .))

 Midterm 1
 Midterm 2

Tree processing often involves
recursive calls on subtrees

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

13

def smalls(t):
 """Return a list of the non-leaf nodes in t that are smaller than all their descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return t.label
 else:

 return min(...)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

https://htdp.org/2018-01-06/Book/part_one.html#(part._sec~3adesign-func)

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

14

def smalls(t):
 """Return a list of the non-leaf nodes in t that are smaller than all descendants.

 >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])])
 >>> sorted([t.label for t in smalls(a)])
 [0, 2]

 """
 result = []
 def process(t):

 process(t)
 return result

1

3

0

6

2

4 5

☑
☑

[,]

2

4 5

0

6

Signature: Tree -> List of Trees

 if t.is_leaf():
 return __
 else:
 smallest = ______________________________________
 if __:

 return min(smallest, t.label)

Signature: Tree -> number
"Find smallest label in t & maybe add t to result"

t.label

t.label < smallest
result.append()t

smallest label
in a branch of t

min([process(b) for b in t.branches])

Practice Question Fall 2021 Final #6
https://c88c.org/sp25/assets/pdfs/exams/c88c/fa21-final.pdf

15

https://c88c.org/sp25/assets/pdfs/exams/c88c/fa21-final.pdf

Process

Read Question

Read Scaffold

Re-read Question

Assess structure

* base case

* type of problem

16

17

Keep on Programming

That's all. Thanks!

