Conclusion

Announcements

CONGRATULATIONS!!

Is Your Brain Full Yet?

Data: values, literals, operations, ‘Higher order function patterns
‘Functions ‘Map, Filter, Reduce

Variables *Recursion

-List, Tuples, Dictionaries *Abstract Data Types

‘Function Definition Statement *Mutation

Conditional Statement *Class & Inheritance

*lteration: list comp, for, while ‘Exceptions

‘Lambda function expr. *|lterators & Generators

*Higher Order Functions *SQL / Declarative Programming

Course Staff

Edwin Vargas Navarro hemimmis
O & jedwin321@berkeley.edu

So what can | say except | like Data Science ~\()/~

Isabelle Ng shermermers
© €D isabelle.ng@berkeley.edu

Hi there! My name is Isabelle and this is my 3rd semester
being a TA for 61A/C88C. In my free time | like making
music and hanging out with friends :) Excited to meet you
all

£) John Teng £)) he/imnis
O & johnteng@berkeley.edu

Hi, I'm John and I'm a fourth year CS major from
Pennsylvania.

Ramya Chitturi shesher/hers

ramya.chitturi@berkeley.edu

Hi! I'm Ramya, a senior majoring in CS and linguistics. |
enjoy sci-fi/fantasy books, crosswords, rock music,
museums, and more! Excited to get to know you this
semester :)

Ethan YOO hesmimsnis
© D cthanyoo7912@berkeley.edu

Fourth-year CS major. The only reason why I'm a math
double is so I can avoid taking CS70, but then | dropped
math ;-;.

wg she/her/hers
© G rdang@berkeley.edu

Hey there, I'm a 4th year EECS major and I'm super
excited to teach C88C! Happy to chat about this course,
classes and clubs at Berkeley, professional development,
guitar, books, movies, TV, music, and more :D

Mira Wagner she/her/hers

mirawagner@berkeley.edu

Hi! I am a sophomore planning to major in data
science/statistics and linguistics. | love reading, especially
mysteries, swimming and baking! Excited for this
semester :)

A"Cia Wang she/her/hers

awwang629@berkeley.edu

Hi! | am a sophomore studying Data Science and Cognitive
Science. | love playing badminton and traveling! Excited to
meet everyone!

Grace Baek she/her/hers

gracebaek@berkeley.edu

Hi! I'm Grace, a junior majoring in Computer Science and
Economics. In my free time, | like to bake, try going to
new cafes, and watch kdramas :) Super excited to meet
everyone!

Lia Fernandez-Grinshpun she/er/hers
liafg@berkeley.edu

Hi! I'm Lia, a fourth year Business & Data Science major. In
my free time, | love to listen to podcasts, run/weightlift,
hike, nerd out over credit cards, and cafe hop. So excited
to meet all of you :)

Dhruv Syngol hemimnis

Hey everyone, I'm a sophomore studying Data Science and
Economics, originally from the Chicago Suburbs! | love to
watch sports (Go Bears!), play pickleball, explore cafes
and restaurants, and go on hikes! Super excited for this
semester!

Grace Xie she/her/hers
gracexie@berkeley.edu
Hello! My name is Grace. I'm a third-year majoring in MCB

and Data Science :0 | love reading sci-fi and baking in my
free time.

Reema Rafifar shemer/ners

reemarafifar@berkeley.edu

Hi everyone! I'm Reema, a second-year majoring in
Neuroscience. | absolutely love movies so come talk to
me about your favorite films! | can't wait to get through
C88C with you!

Designing Functions

Approaching The Exam

- Skim the topics (~1 min)

- Handle the "easy"(est) questions first
* Read the whole question first!

* Read the text

* Read the doctests!

- What techniques might be applicable?
- Pattern matching is OK

» Draft a solution on scratch paper!

* Write yourself notes

Michael Ball | UC Berkeley | https://c88c.org | © CC BY-NC-SA

How to Design Programs

From Problem Analysis to Data Definitions
Identify the information that must be represented and how it is represented in the chosen
programming language. Formulate data definitions and illustrate them with examples.

Signature, Purpose Statement, Header

State what kind of data the desired function consumes and produces. Formulate a concise
answer to the question what the function computes. Define a stub that lives up to the
signature.

Functional Examples
Work through examples that illustrate the function’s purpose.

Function Template
Translate the data definitions into an outline of the function.

Function Definition
Fill in the gaps in the function template. Exploit the purpose statement and the examples.

Testing

Articulate the examples as tests and ensure that the function passes all. Doing so
discovers mistakes. Tests also supplement examples in that they help others read and
understand the definition when the need arises—and it will arise for any serious program.

https://htdp.org/2018-01-06/Book/

https://htdp.org/2018-01-06/Book/

Tree Processing

Tree-Structured Data

class Tree:
def __init (self, label, branches=[]):
self.label = label
self.branches = list(branches)

def is_leaf(self):
return not self.branches

A tree can contains other trees:
(5, [6, 71, 8, [[9], 10]]
(+5(-67) 8 (x (-9) 10))

(S

(NP (JJ Short) (NNS cuts))

(VP (VBP make)
(NP (JJ long) (NNS delays)))
.)

(. .))

Midterm 1</11i>

Midterm 2</11i>

Tree processing often involves
recursive calls on subtrees

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non—-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

def smalls(t): Signature: Tree -> List of Trees

"""Return a list of the non-leaf nodes in t that are smaller than all their descendants. 1

>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]1), Tree(3, [Tree(@, [Tree(6)1)1)1) \\

>>> sorted([t.label for t in smalls(a)l) 3
[0, 2] |
min R 2 @
result = [] Signature: Tree -> number //\\ |
def process(t): "Find smallest label in t & maybe add t to result" 4 5 6

if t.is_leaf():

return t.label <<<;;7

else:

return min(...) [
process(t)
return result

https://htdp.org/2018-01-06/Book/part_one.html#(part._sec~3adesign-func)

Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the
non—-leaf nodes in t whose labels are smaller than any labels of their descendant nodes.

def smalls(t): Signature: Tree -> List of Trees

"""Return a list of the non-leaf nodes in t that are smaller than all descendants. 1
>>> a = Tree(l, [Tree(2, [Tree(4), Tree(5)]1), Tree(3, [Tree(@, [Tree(6)1)1)1) \\
>>> sorted([t.label for t in smalls(a)l) 3
[0, 2] |
2
min . @
result = [] Signature: Tree -> number //\\ |
def process(t): "Find smallest label in t & maybe add t to result" 4 5 6
if t.is_leaf():
t. label v
return
else: . _
smallest = min([process(b) for b in t.branchesl])
_smallest label”™; ¢ t.label < smallest . 2 0
in a branch of t result.append(t) /\ |
return min(smallest, t.label) 6
process(t) [4 > 1

return result

Practice Question Fall 2021 Final #6
https://c88c.org/sp25/assets/pdfs/exams/c88c/fa2l-final.pdf
6. (7.0 points) Objective Judge

A debate judge is in charge of declaring the winner of a two-sided debate. In order to be more objective, the
judge starts by drawing out all the points (nodes) in the debate as a “concept tree.” A point’s children are
sub-points that are related to that point.

Then the judge creates another tree of identical structure called the “winner’s tree” where non-leaf nodes are
marked as None and leaf nodes are marked as True if the “for” side has won that point or False if the “against”
side has won that point.

Complete the function judge which takes in a winner’s tree t corresponding to a debate and returns True if the
“for” side is the winner and False if the “against” side is the winner. The judge decides the “for” side has won a
given point if they have won the majority of points directly below that point. If there is a tie, the “against” side
wins that point. Using these rules, the judge can start at the leaves and move up to determine who won the
point that is the root node and therefore the debate.

Concept Tree (NOT used in function) | Winner’s Tree (used in function)

L) 7.\

https://c88c.org/sp25/assets/pdfs/exams/c88c/fa21-final.pdf

def judge(t):
Process e
>>> pointl = Tree(True)
>>> point2 = Tree(None, [Tree(True), Tree(True)])
>>> point3 = Tree(False)
>>> point4 = Tree(None, [Tree(False), Tree(True), Tree(False)])
>>> judge(Tree(None, [pointl, point2, point3]))#debatel

Read Question

Read Scaffold

Re-read Question True

>>> judge(Tree(None, [pointl, point4, point3]))#debate2
Assess structure Effse

if

% base case T ToTT ST oo ’
return t.value

else:
points_won = 0
for b in t.branches:
if

* type of problem

return True
else:

(a) (7.0 pt) Write the fully completed judge function below using the skeleton code provided. You may not
add, change, or delete lines from the skeleton code.

def judge(t):
if t.is_leaf()::
return t.value
else:
points_won = 0
for b in t.branches:
if judge(b):
points_won += 1
if 2 * points_won > len(t.branches):
return True
else:
return False

Keep on Programming

That's all. Thanks!

