
DATA C88C Recursion
Spring 2025 Discussion 4: February 18, 2025

Recursion
Many students find this topic challenging. Everything gets easier with practice. Please help each other learn.

Q1: Swipe

Implement swipe, which prints the digits of argument n, one per line, first backward then forward. The left-most
digit is printed only once. Do not use while or for or str. (Use recursion, of course!)

def swipe(n):
"""Print the digits of n, one per line, first backward then forward.

>>> swipe(2837)
7
3
8
2
8
3
7
"""
if n < 10:

print(n)
else:

"*** YOUR CODE HERE ***"

First print the first line of the output, then make a recursive call, then print the last line of the output.

2 Recursion

Q2: Skip Factorial

Define the base case for the skip_factorial function, which returns the product of every other positive integer,
starting with n.

def skip_factorial(n):
"""Return the product of positive integers n * (n - 2) * (n - 4) * ...

>>> skip_factorial(5) # 5 * 3 * 1
15
>>> skip_factorial(8) # 8 * 6 * 4 * 2
384
"""
if ___:

return ___
else:

return n * skip_factorial(n - 2)

If n is even, then the base case will be 2. If n is odd, then the base case will be 1. Try to write a condition that
handles both possibilities.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

Recursion 3

Q3: Recursive Hailstone

Recall the hailstone function from Homework 1. First, pick a positive integer n as the start. If n is even, divide
it by 2. If n is odd, multiply it by 3 and add 1. Repeat this process until n is 1. Complete this recursive version of
hailstone that prints out the values of the sequence and returns the number of steps.

def hailstone(n):
"""Print out the hailstone sequence starting at n,
and return the number of elements in the sequence.
>>> a = hailstone(10)
10
5
16
8
4
2
1
>>> a
7
>>> b = hailstone(1)
1
>>> b
1
"""
print(n)
if n % 2 == 0:

return even(n)
else:

return odd(n)

def even(n):
return ____

def odd(n):
"*** YOUR CODE HERE ***"

An even number is never a base case, so even always makes a recursive call to hailstone and returns one more than
the length of the rest of the hailstone sequence.

An odd number might be 1 (the base case) or greater than one (the recursive case). Only the recursive case should
call hailstone.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

4 Recursion

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://go.c88c.org/here

Recursion 5

Extra Questions
The questions below are optional but recommended if you would like some extra practice.

Q4: Is Prime

Implement is_prime that takes an integer n greater than 1. It returns True if n is a prime number and False
otherwise. Try following the approach below, but implement it recursively without using a while (or for) statement.

def is_prime(n):
assert n > 1
i = 2
while i < n:

if n % i == 0:
return False

i = i + 1
return True

You will need to define another “helper” function (a function that exists just to help implement this one). Does it
matter whether you define it within is_prime or as a separate function in the global frame? Try to define it to take
as few arguments as possible.

def is_prime(n):
"""Returns True if n is a prime number and False otherwise.
>>> is_prime(2)
True
>>> is_prime(16)
False
>>> is_prime(521)
True
"""
"*** YOUR CODE HERE ***"

Define an inner function that checks whether some integer between i and n evenly divides n. Then you can call it
starting with i=2:

def is_prime(n):
def f(i):

if n % i == 0:
return ____

elif ____:
return ____

else:
return f(____)

return f(2)

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

6 Recursion

Q5: Function Repeater

Define a function make_fn_repeater which takes in a one-argument function f and an integer x. It should return
another function which takes in one argument, another integer. This function returns the result of applying f to x
this number of times.

Make sure to use recursion in your solution.

def make_func_repeater(f, x):
"""
>>> incr_1 = make_func_repeater(lambda x: x + 1, 1)
>>> incr_1(2) #same as f(f(x))
3
>>> incr_1(5)
6
"""
def repeat(___________________):

if _______________________:
return __________________

else:
return __________________

return _________________________

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

	Recursion
	Q1: Swipe
	Q2: Skip Factorial
	Q3: Recursive Hailstone

	Document the Occasion
	Extra Questions
	Q4: Is Prime
	Q5: Function Repeater

