
DATA C88C Final Review
Spring 2025 Discussion 12: April 29, 2025

Environment Diagrams
Q1: Nested Calls Diagrams

Draw the environment diagram that results from executing the code below.

See the web version of this resource for the environment diagram.

HOFs
Q2: Make Repeater

Implement the function make_repeater so that make_repeater(f, n)(x) returns f(f(...f(x)...)), where f is
applied n times. That is, make_repeater(f, n) returns another function that can then be applied to another
argument. For example, make_repeater(square, 3)(42) evaluates to square(square(square(42))).



2 Final Review

def make_repeater(f, n):
"""Returns the function that computes the nth application of f.
>>> add_one = lambda x: x + 1
>>> triple = lambda x: x * 3
>>> square = lambda x: x * x
>>> add_three = make_repeater(add_one, 3)
>>> add_three(5)
8
>>> make_repeater(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1
243
>>> make_repeater(square, 2)(5) # square(square(5))
625
>>> make_repeater(square, 4)(5) # square(square(square(square(5))))
152587890625
>>> make_repeater(square, 0)(5) # Yes, it makes sense to apply the function zero
times!
5
"""
g = lambda x: x
while n > 0:

g = composer(f, g)
n = n - 1

return g

def make_repeater2(f, n): # Alternative solution
def inner_func(x):

k = 0
while k < n:

x, k = f(x), k + 1
return x

return inner_func

def composer(func1, func2):
"""Returns a function f, such that f(x) = func1(func2(x))."""
def f(x):

return func1(func2(x))
return f

Solution using composer:

We create a new function in every iteration of the while statement by calling composer.

Solution not using composer:

We create a single inner function that contains the while logic needed to do calculations directly, as opposed to
creating another function for every while loop iteration.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Final Review 3

Recursion
Q3: Subsequences

A subsequence of a sequence S is a subset of elements from S, in the same order they appear in S. Consider the list
[1, 2, 3]. Here are a few of its subsequences [], [1, 3], [2], and [1, 2, 3].

Write a function that takes in a list and returns all possible subsequences of that list. The subsequences should be
returned as a list of lists, where each nested list is a subsequence of the original input.

In order to accomplish this, you might first want to write a function insert_into_all that takes an item and a list
of lists, adds the item to the beginning of each nested list, and returns the resulting list.

def insert_into_all(item, nested_list):
"""Return a new list consisting of all the lists in nested_list,
but with item added to the front of each. You can assume that
nested_list is a list of lists.

>>> nl = [[], [1, 2], [3]]
>>> insert_into_all(0, nl)
[[0], [0, 1, 2], [0, 3]]
"""
return [[item] + lst for lst in nested_list]

def subseqs(s):
"""Return a nested list (a list of lists) of all subsequences of S.
The subsequences can appear in any order. You can assume S is a list.

>>> seqs = subseqs([1, 2, 3])
>>> sorted(seqs)
[[], [1], [1, 2], [1, 2, 3], [1, 3], [2], [2, 3], [3]]
>>> subseqs([])
[[]]
"""
if not s:

return [[]]
else:

subset = subseqs(s[1:])
return insert_into_all(s[0], subset) + subset

OOP
Q4: Bear

Implement the SleepyBear and WinkingBear classes so that calling their print method matches the doctests. Use
as little code as possible and try not to repeat any logic from Eye or Bear. Each blank can be filled with just two
short lines.

Discussion Time: Before writing code, talk about what is different about a SleepyBear and a Bear. When using
inheritance, you only need to implement the differences between the base class and subclass. Then, talk about

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



4 Final Review

what is different about a WinkingBear and a Bear. Can you think of a way to make the bear wink without a new
implementation of print?

class Eye: ”””An eye.

>>> Eye().draw()
'0'
>>> print(Eye(False).draw(), Eye(True).draw())
0 -
"""
def __init__(self, closed=False):

self.closed = closed

def draw(self):
if self.closed:

return '-'
else:

return '0'

class Bear:
"""A bear.

>>> Bear().print()
? 0o0?
"""
def __init__(self):

self.nose_and_mouth = 'o'

def next_eye(self):
return Eye()

def print(self):
left, right = self.next_eye(), self.next_eye()
print('? ' + left.draw() + self.nose_and_mouth + right.draw() + '?')

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Final Review 5

class SleepyBear(Bear):
"""A bear with closed eyes.

>>> SleepyBear().print()
? -o-?
"""
def next_eye(self):

return Eye(True)

class WinkingBear(Bear):
"""A bear whose left eye is different from its right eye.

>>> WinkingBear().print()
? -o0?
"""
def __init__(self):

super().__init__()
self.eye_calls = 0

def next_eye(self):
self.eye_calls += 1
return Eye(self.eye_calls % 2)

Linked Lists
A linked list is a Link object or Link.empty.

You can mutate a Link object s in two ways: - Change the first element with s.first = ... - Change the rest of
the elements with s.rest = ...

You can make a new Link object by calling Link: - Link(4) makes a linked list of length 1 containing 4. - Link(4, s)
makes a linked list that starts with 4 followed by the elements of linked list s.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



6 Final Review

class Link:
"""A linked list is either a Link object or Link.empty

>>> s = Link(3, Link(4, Link(5)))
>>> s.rest
Link(4, Link(5))
>>> s.rest.rest.rest is Link.empty
True
>>> s.rest.first * 2
8
>>> print(s)
<3 4 5>
"""
empty = ()

def __init__(self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __repr__(self):
if self.rest:

rest_repr = ', ' + repr(self.rest)
else:

rest_repr = ''
return 'Link(' + repr(self.first) + rest_repr + ')'

def __str__(self):
string = '<'
while self.rest is not Link.empty:

string += str(self.first) + ' '
self = self.rest

return string + str(self.first) + '>'

Q5: Linear Sublists

Definition: A sublist of linked list s is a linked list of some of the elements of s in order. For example, <3 6 2 5 1 7>
has sublists <3 2 1> and <6 2 7> but not <5 6 7>.

Definition: A linear sublist of a linked list of numbers s is a sublist in which the difference between adjacent
numbers is always the same. For example <2 4 6 8> is a linear sublist of <1 2 3 4 6 9 1 8 5> because the
difference between each pair of adjacent elements is 2.

Implement linear which takes a linked list of numbers s (either a Link instance or Link.empty). It returns the
longest linear sublist of s. If two linear sublists are tied for the longest, return either one.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Final Review 7

def linear(s):
"""Return the longest linear sublist of a linked list s.

>>> s = Link(9, Link(4, Link(6, Link(7, Link(8, Link(10))))))
>>> linear(s)
Link(4, Link(6, Link(8, Link(10))))
>>> linear(Link(4, Link(5, s)))
Link(4, Link(5, Link(6, Link(7, Link(8)))))
>>> linear(Link(4, Link(5, Link(4, Link(7, Link(3, Link(2, Link(8))))))))
Link(5, Link(4, Link(3, Link(2))))
"""
def complete(first, rest):

"The longest linear sublist of Link(first, rest) with difference d."
if rest is Link.empty:

return Link(first, rest)
elif rest.first - first == d:

return Link(first, complete(rest.first, rest.rest))
else:

return complete(first, rest.rest)
if s is Link.empty:

return s
longest = Link(s.first) # The longest linear sublist found so far
while s is not Link.empty:

t = s.rest
while t is not Link.empty:

d = t.first - s.first
candidate = Link(s.first, complete(t.first, t.rest))
if length(candidate) > length(longest):

longest = candidate
t = t.rest

s = s.rest
return longest

def length(s):
if s is Link.empty:

return 0
else:

return 1 + length(s.rest)

There are three cases: - If rest is empty, return a one-element list containing just first. - If rest.first is in
the linear sublist that starts with first, then build a list that contains first, and rest.first. - Otherwise,
complete(first, rest.rest).

This while loop is creating a candidate linear sublist for every two possible starting values: s.first and t.first.
The rest of the linear sublist must be in t.rest.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



8 Final Review

Iterators
Q6: Repeated

Implement repeated, which takes in an iterator t and an integer k greater than 1. It returns the first value in t
that appears k times in a row.

Important: Call next on t only the minimum number of times required. Assume that there is an
element of t repeated at least k times in a row.

Hint: If you are receiving a StopIteration exception, your repeated function is calling next too many
times.

def repeated(t, k):
"""Return the first value in iterator t that appears k times in a row,
calling next on t as few times as possible.

>>> s = iter([10, 9, 10, 9, 9, 10, 8, 8, 8, 7])
>>> repeated(s, 2)
9
>>> t = iter([10, 9, 10, 9, 9, 10, 8, 8, 8, 7])
>>> repeated(t, 3)
8
>>> u = iter([3, 2, 2, 2, 1, 2, 1, 4, 4, 5, 5, 5])
>>> repeated(u, 3)
2
>>> repeated(u, 3)
5
>>> v = iter([4, 1, 6, 6, 7, 7, 8, 8, 2, 2, 2, 5])
>>> repeated(v, 3)
2
"""
assert k > 1
count = 0
last_item = None
while True:

item = next(t)
if item == last_item:

count += 1
else:

last_item = item
count = 1

if count == k:
return item

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Final Review 9

Trees
Q7: Long Paths

Implement long_paths, which returns a list of all paths in a tree with length at least n. A path in a tree is a list of
node labels that starts with the root and ends at a leaf. Each subsequent element must be from a label of a branch
of the previous value’s node. The length of a path is the number of edges in the path (i.e. one less than the number
of nodes in the path). Paths are ordered in the output list from left to right in the tree. See the doctests for some
examples.

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



10 Final Review

def long_paths(t, n):
"""Return a list of all paths in t with length at least n.

>>> long_paths(Tree(1), 0)
[[1]]
>>> long_paths(Tree(1), 1)
[]
>>> t = Tree(3, [Tree(4), Tree(4), Tree(5)])
>>> left = Tree(1, [Tree(2), t])
>>> mid = Tree(6, [Tree(7, [Tree(8)]), Tree(9)])
>>> right = Tree(11, [Tree(12, [Tree(13, [Tree(14)])])])
>>> whole = Tree(0, [left, Tree(13), mid, right])
>>> print(whole)
0
1
2
3
4
4
5

13
6
7
8

9
11
12
13
14

>>> for path in long_paths(whole, 2):
... print(path)
...
[0, 1, 2]
[0, 1, 3, 4]
[0, 1, 3, 4]
[0, 1, 3, 5]
[0, 6, 7, 8]
[0, 6, 9]
[0, 11, 12, 13, 14]
>>> for path in long_paths(whole, 3):
... print(path)
...
[0, 1, 3, 4]
[0, 1, 3, 4]
[0, 1, 3, 5]
[0, 6, 7, 8]
[0, 11, 12, 13, 14]
>>> long_paths(whole, 4)
[[0, 11, 12, 13, 14]]
"""
if n <= 0 and t.is_leaf():
return [[t.label]]

paths = []
for b in t.branches:
for path in long_paths(b, n - 1):

paths.append([t.label] + path)
return paths

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.



Final Review 11

Document the Occasion
Please all fill out the attendance form (one submission per person per week).

Note: This worksheet is a problem bank—most TAs will not cover all the problems in discussion section.

https://go.c88c.org/here

	Environment Diagrams
	Q1: Nested Calls Diagrams

	HOFs
	Q2: Make Repeater

	Recursion
	Q3: Subsequences

	OOP
	Q4: Bear

	Linked Lists
	Q5: Linear Sublists

	Iterators
	Q6: Repeated

	Trees
	Q7: Long Paths

	Document the Occasion

