Computational Structures in Data Science

Recursion

Week 4, Summer 2024. 7/8 (Mon)

Lecture 11

Berkeley

©@O®S©

Recursion

Announcements

- HWO04, Lab04 due today (11:59 PM PST)
- “(Urgent) Midterm Exam Scheduling” due TOMORROW (7/9 11:59 PM PST)
- HWOS5, Lab05 due 7/10 (Wed)
- ProjectO1 ("Maps”) is out!
. Checkpoint: due 7/10 (Wed)
- Full project: due 7/18
- New weekly course survey out in Gradescope (optional, +0.5 extra credit pts)

Announcements: Midterm scheduling!

- IMPORTANT: Complete the "Midterm Exam Scheduling” form on Gradescope
- Due: Tuesday July 9th, 11:59 PM PST

- It is required that every student fill this out. If you don't fill this out, you will risk
missing the midterm.

- Please, please do this ASAP! Thank you!

- (DSP students with +50% exam time) We have sent you a Google Form to
schedule your exam. Please fill this out ASAP!

- But, you should still fill out the above Gradescope “Midterm Exam Scheduling”
form as well!

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.gradescope.com/courses/786589/assignments/4623242/review_grades

Midterm content

- Midterm will cover content from start of course up to (and including)
OOP+Inheritance, aka:

. Start (inclusive): Lecture 01: “Welcome & Intro” (6/17)
- End (inclusive): Lecture 15: “O0P - Inheritance” (7/15)
- Midterm will be done through Zoom + Gradescope

- Study tip: past C88C exams can be found here:
https://c88c.org/sp24/articles/resources.html#past-midterms

- Take a look to get a sense of what C88C exams tend to look like. (I highly, highly
encourage this)

- “Be prepared” - Boy Scouts
- “Luck is when preparation meets opportunity” - Roman philosopher Seneca

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://c88c.org/sp24/articles/resources.html#past-midterms

Midterm logistics

- The midterm will be held over Zoom + Gradescope

- YOUu must have your camera + screen sharing on during the entire exam, and we will
be doing screen+camera recording.

- You must take the exam in a quiet room with no other students present

- Things to bring to the exam (and nothing elsel):

- Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine,
eg: Passport, driver’s license, etc.

- (Optional) Five (5) pages of handwritten (not typed!) notes
- (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser.

- We will provide everyone with a 1-2 page digital PDF of additional reference

« Other than the above notes, the exam will be closed book, closed notes.
- (For more info, stay tuned for an Ed post)

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Lecture overview

- Recursion
- Recursion in Python
- |teration (for/while) vs recursion
- |dentifying recursive structure of problems

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(Optional) vee [Fractals

python3 -1 11-Recursion.py
- This uses Turtle Graphics.

- The turtle module is really cool, but met something you need to learn
- vee is the one recursive problem that doesn't have a base case

- But fractals in general are a fun way to visualize self-similar structures
- Use the following keys to play with the demo

- Space to draw

- Cto Clear

- Up to add "vee" to the functions list

- Down to remove the "vee" functions from the list.
- Some cool variations on vee, seen in Snap! (the language of C510)

« More Fractals

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

Recursion: a broad definition

- Recursion occurs when the definition of a concept
or process depends on a simpler or previous
version of itself. (from: Wikipedia)

=

A visual form of recursion

known as the Droste effect. The
woman in this image holds an
object that contains a smaller
image of her holding an identical
object, which in turn contains a
smaller image of herself holding
an identical object, and so forth.
1904 Droste cocoa tin, designed
by Jan Misset

https://en.wikipedia.org/wiki/Recursion

Recursion application: plants/trees

- Fun application: artificial plants/trees built via recursively-defined

R
NN

http://quyhaas.com/bfoit/itp/Recursi
oninNature/RecursioninNature.html

(Step 1) Start with a line segment.

(Step 2) Replace the line segment with 5 line segments as pictured, each 1/3 the length of
the original.

(Step N) Replace each segment in step n-1 with a reduced copy of the step n-1 figure.

http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html
http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html

Recursion application: plants/trees

Figure 6 shows the compounding of some of the inflorescences. These pictures were all done with
simple recursion.

monochasium dichasium umbel panicle

Figure 6: Compound inflorescences

Figure 7 shows some imaginary inflorescences obtained by using random numbers to vary segment lengths
and angles and taking artistic liberties with the above.

Source:
http://quyhaas.com/bfoit/itp/Recursi
oninNature/RecursioninNature.html

Figure 7: Imaginary inflorescences

http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html
http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html

Recursion in Computer Science /| Math

- Sometimes, a problem or process is easiest to describe via a recursive definition.

- Fibonacci sequence: 0, 1,1, 2,3,5,8, 13,21, 34, ..
« Recursive definition: Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

MONKS

Fibonacci Sequence

|

Numbers
13 - 21 =
SINNSRY3 =
5 + 8 = 1
SENEAE =
2 * 3 =
I =

1 + 1 =)
0 + 1 = 1

] e ' == & [
S
Default

Source: https://mathmonks.com/fibonacci-sequence

https://mathmonks.com/fibonacci-sequence

Recursion in Computer Science /| Math

- Searching for a file in a file system ;

< m=[l= m- #v & =3 =
. . .
® | O fl n d a fl |e . Sta rtl ng frO| | I th e Favourites ol Applications L i05Support > AceessibilityBundles »
. o & Macintosh HD » Library [B Library * AccessoryUpdaterBundles »
A Applicat —
. . . . 778 APPICANONS gy Netwark - System L Accounts >
current directory, examine the files in i remetepre |1 deten : drass Sook Parins
/ 2 Desktop default.profraw AssetCache

Assets

the current directory. B seuer

@) airDrop

Pictures :z:iisotant
- If there is another directory, then © oo
(recursively) search for the file in e e

Colors

that subdirectory. Been

™ Documents "
Compositions

ocations ConfigurationProfiles

- In that subdirectory: if there is a Comcmmre
subdirectory, search for the file in that
S U bd | re CtO ry Source: https://mac-

optimization.bestreviews.net/how-to-restore-
system-files-on-macos/

. ..and soon...
A Folder contains:
- Files
- Folders < - Recursion!

https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/
https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/
https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/

Recursion In Practice

- Key idea: A recursive function operates by solving smaller
sub-problems

- “Smaller sub-problems” -> recursive function calls

- Compared to a for-loop, while loop, we will not directly
specify how many times we need to make a function call.

Toy Example: Countdown

A recursive function calls itself in its body:

def countdown(n): >>> countdown(5)
if n == 0: 5
print('Blastoff!") 4
else: 3
print(n) 2
countdown(n - 1) 1
Blastoff

&

Recursive call!

15

The Recursive Process

Recursive solutions involve two major parts:

= Base case(s), the problem is simple enough to be solved
directly

o Recursive case(s). A recursive case has three
components:

- Divide the current problem into one or more simpler or
smaller parts

- Invoke the function (recursively) on each part, and

- Combine the solutions of the parts into a solution for the
current problem.

Computational Structures in Data Science

Recursion

©@O®S©

Learning Objectives

- Compare Recursion and Iteration to each other

- Translate some simple functions from one method to another
- Write a recursive function

- Understand the base case and a recursive case

18

Example: Palindromes

. Definition: Palindromes are the same word
forwards and backwards.

- Examples:
- C88C
-racecar
- LOL

-a man a plan a canal panama “Bob” — Weird Al Yankovic

. 3ibohphobia (Lyrics contain only palindromes!)
P ' ‘I, man, am Regal, a German am |
Never odd or even

- hitps://czechtheworld.com/best- If | had a Hi-Fi

palindromes/#palindrome-words Madam, I'm Adam
Too hot to hoot”

- The fear of palindromes.

19

https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words

Example: Palindromes

- Palindromes are the same word forwards and backwards.
- How to define an "is_palindrome(word) " function?
- One way: check if the reversed string is the same as the input string

def is_palindrome(input_str):
return input_str == reverse str(input_str)

>>> 1s_palindrome("too hot to hoot")
True

>>> 1s_palindrome("meow"

False

Example: Reverse (iteratively)

- Question: How to define ‘reverse_str() via iteration (for/while)?

- Notably, let’s not use the [::-1] shortcut. For practice, let's
iImplement it once with a for loop, and another with a while loop.

def reverse_str_for(input_str): def reverse str _while(input_str):
FILL ME IN ne
>>> reverse _str while('hello"')
‘olleh’

1RINs

FILL ME IN

Example: Reverse (iteratively)

- Question: How to define ‘reverse_str() via iteration (for/while)?

- Notably, let’s not use the [::-1] shortcut. For practice, let's
iImplement it once with a for loop, and another with a while loop.

def reverse_str_for(s): def reverse_str _while(s):
result = "' e
for letter in s: >>> reverse _str while('hello"')
result = letter + result ‘olleh’
return result e
result = "'
while s:
first = s[0]
s = s[1:]

Note: there are many other ways to do this. For instance, in the 1t = €i 1
while-loop implementation we could have iterated backwards result = first + result

over the string via indexing. return result

a

u]

Example: Reverse (recursively)

- Question: How to define reverse_str() as a recursive process in

the following manner?

Base case(s), the problem is simple enough
to be solved directly

Recursive case(s). A recursive case has three 7

components:

- Divide the current problem into one or
more simpler or smaller parts

- Invoke the function (recursively) on each
part, and

- Combine the solutions of the parts into a
solution for the current problem.

"hello” -> "olleh”

(Hint) Recursive structure of problem:

If | reversed the substring “ello” -> “olle”, how
do | use this partial result “olle” to solve my
current problem of reversing “hello”?

Answer: “olle” + “h” -> “olleh”, or in code:
reverse_str(“hello”) is reverse_str(“ello”) + “h”
Or, more generally:
reverse_str(s) is reverse_str(s[1:]) + s[O]
l/ Y] \ ﬁ J
Solve smaller problem Combine smaller solution to
(Divide+Iinvoke) solve the current problem

Example: Reverse (recursively)

- Question: How to define reverse_str() as a recursive process in
the following manner?

o "hello"” -> "olleh"
Base case(s), the problem is simple enough

to be solved directly (Hint) Base cases
Recursive case(s). A recursive case has three What are the simplest (“trivial”) strings to
components: reverse?

- Divide the current problem into one or Empty string, string with one character

more simpler or smaller parts reverse_str(*) ->

- Invoke the function (recursively) on each reverse_str(“0”) -> “0”
part, and

- Combine the solutions of the parts into a
solution for the current problem.

Example: Reverse (recursively)

- Now that we've identified the recursive process for string reversal,
let’s translate it into Python code

"hello™ -> "olleh”

- X Base cases
What are the simplest (“trivial”) strings to reverse?

= Base case(s), the problem is simple enough
to be solved directly

o Recursive case(s). A recursive case has three
components: reverse_str(*”) ->

[] [] . (13 n _> (1Pt
- Divide the current problem into one or reverse_str("o”) -> "o
more simpler or smaller parts

+ Invoke the function (recursively) on each || ™ Recursive structure
part, and “olle” + “h” -> “ollen”, or in code:

i - , reverse_str(“hello”) is reverse_str(“ello”) + “h”
- Combine the solutions of the parts into a Or, more generally:

solution for the current problem. reverse_str(s) is reverse_str(s[1:]) + s[0]

Example: Reverse (recursively)

- Now that we've identified the recursive process for string reversal,
let’s translate it into Python code

"hello"” -> "olleh”

Base cases def reverse str(s):
What are the simplest (“trivial”) strings to reverse? # Base cases
reverse_str(*") -> “

-str(”) # FILL ME IN

reverse_str(“0”) -> “0” :
Recursive cases

Recursive structure # FILL ME IN

“olle” + “h” -> “olleh”, or in code:
reverse_str(“hello”) is reverse_str(“ello”) + “h”
Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[O]

Question: how to fill in the
base cases?

Example: Reverse (recursively)

- Now that we've identified the recursive process for string reversal,
let’s translate it into Python code

"hello"” -> "olleh”

Base cases def reverse str(s):

What are the simplest (“trivial”) strings to reverse? # Base cases

reverse_str(*") -> “ . .

reverse_str(“0”) -> “0” if len(s) == 0 or len(s == 1):
return s

Recursive structure # Recursive cases

“olle” + “h” -> “olleh”, or in code: # FILL ME IN

reverse_str(“hello”) is reverse_str(“ello”) + “h”
Or, more generally:
reverse_str(s) is reverse_str(s[1:]) + s[O]

Question: how to fill in the
recursive cases?

Example: Reverse (recursively)

- Now that we've identified the recursive process for string reversal,
let’s translate it into Python code

"hello"” -> "olleh”

Base cases def reverse str(s):
What are the simplest (“trivial”) strings to reverse? # Base cases
reverse_str(*’) -> “ . _ e A
reverse_str(‘o”) -> “0’ if len(s) == @ or len(s) == 1:
return s
_ # Recursive cases
Recursive structure return reverse_str(s[1:]) + s[@]

“olle” + “h” -> “ollenh”, or in code:
reverse_str(“hello”) is reverse_str(“ello”) + “h”
Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[O]

How does the recursion work?

- Our algorithm in words:
- Take the first letter, put it at the end
- The beginning of the string is the reverse of the rest.

def reverse str(s):
Base cases
N reverse('BC') + TA' if 1en(s) == 0 or len(s) == 1:
R B! 4+ 1A return s
Recursive cases
S 'C!' + 'B!' + 'A return reverse str(s[1:]) + s[©]
9

'"CBA'

reverse('ABC')

reverse('C') +

29

Iteration vs Recursion: Sum Numbers

def sum_for(n):

teratively .~ o
(For |OOp): for i in range(@, n + 1):

S =5s + 1
return s

teratively def sun_uhile(n):

(While loop): i=o
while 1 < n:
i=1+1
S =S5 + 1
return s

Recursively def i:mﬁr‘iur@‘?e(n) :

return O
return n + sum_recurse(n - 1)

Aside: closed form solutions (Math)

Sometimes, a recursive math function will have a closed form solution!
In this class: even if you know the closed-form solution, and we ask you to
implement it recursively: don't just use the closed-form solution ©

def sum_recurse(n): def fib(n):
if n == 0: if n <= 1:
return © return n
return n + sum_recurse(n - 1) return fib(n - 1) + fib(n - 2)
def sum closed form(n): g = (1 + 5**.,5) / 2 # Golden ratio.
return (n * (n + 1)) / 2 def fib_ closed form(N):

return int((g**N - (1-g)**N) / 5**.5)

For the curious (beware, deep math!):
https://en.wikipedia.org/wiki/Fibonacci_sequence#Closed-form_expression

31

https://en.wikipedia.org/wiki/Fibonacci_sequence#Closed-form_expression

The Recursive Process

Recursive solutions involve two major parts:

» Base case(s), the problem is simple enough to be
solved directly
= Recursive case(s). A recursive case has three

components:

= Divide the problem into one or more simpler or
smaller parts

= Invoke the function (recursively) on each part, and

= Combine the solutions of the parts into a solution for
the problem.

In Python, how does it work under the hood?

- Each recursive call gets its own local variables
- Just like any other function call
- Computes its result (possibly using additional calls)
- Just like any other function call
- Returns its result and returns control to its caller
- Just like any other function call
- The function that is called happens to be itself
- Called on a simpler problem
- Eventually stops on the simple base case

Another Example: minimum of a sequence

indexing an element of a

def first(s):
"""Return t st element in a sequence."""
return s[0O]
def rest(s):
"""Return all elements in a sequence after the first"""

return s[1:]

Slicing a sequence of elements

def min_r(s):
“?PReturn minimum value in a sequence.”””

if Base Case

else:

Recursive Case

- Recursion over sequence length

Recall: Iteration

1. Initialize the “base” case of no iterations

def sum_of_sq es(n) . 2. Starting value

accum = 0 23. Ending value
for 1 1n range(l,n+1):

accum =_accum + 1x1
return accum

4. New loop variable value

Recursion Key concepts - by example

1. Test for simple “base” case 2. Solution in simple “base” case

-\ yad

def sum of_squares(n):
if n < 1:
return 0
else:
return sgm_of_squares(n—l) + Nx%x2

I\ [N

3. Assume recusive solution | |
to simpler problem 4. "Combine” the simpler part

of the solution, with the
recursive case

- The sum of no numbers is zero
 The sum of 12 through n? is the
- sum of 12 through (n-1)
- plus n?

def sum_of_squares(n):
if n < 1:
return 0
else:
return sum_of_squares(n-1) + n*x%2

Why does it work

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3%%x2

=> sum_of_squares(l) + 2*%*2 + 3%%2

=> sum_of_squares(0) + 1*%2 + 2%%2 + 3%%x2
=> 0 + 1%x%2 + 2%%2 + 3%%2 = 14

Questions

- Question: for each, in what order do we sum the squares ?

def sum_of_squares(n): accum =0
accum = 0 accum += 1**2
for i in range(l,n+1): accum += 2**2
accum = accum + J*xx2 .
return accum accum += n**2
def sum_of_squares(n): def sum_of_squares(n):
if n < 1: if n < 1:
return 0 return 0
else: else:
return sum_of_squares(n-1) + nx*2 return n**2 + sum_of_squares(n-1)
Output = ((((0) + 1**2) + 2**2) + ...) + n**2 Output = n**2 + ((n-1)**2 + ((n-2)**2 + ...) + 0)))

Hint: Python always evaluates left-to-right

Trust ...

- The recursive “leap of faith” works as long as we hit the base case eventually

- What happens if we don't?
- “Infinite Loop”

Example: infinite loop (recursion)

« This code will never finish

>>> sum_recurse_inf_loop(3)

def sum_recurse_inf_loop(n): Traceback (most recent call last):

base case File

if n == 0: "C:\Users\Eric\c88c\lectures\lecturell\lecturell.py",
return 0 line 96, in <module>

BUG: I forgot to do (n-1). Infinite loop! print(sum_recurse_inf_loop(3))

return n + sum_recurse_inf_loop(n) File

"C:\Users\Eric\c88c\lectures\lecturell\lecturell.py",
line 94, in sum_recurse_inf loop
return n + sum_recurse_inf loop(n)

Aside: By default, Python has a maximum limit on

how much recursive “depth” is allowed before it [Previous line repeated 995 more times]

terminates the program. File
If Python didn’t have this max limit, then our code "C:\Users\Eric\c88c\lectures\lecturell\lecturell.py",
would have run forever! line 91, in sum_recurse_inf_loop

if n ==

Or, to be more precise: eventually our CPU would run
out of memory and crash. This is because function | > RecursionError: maximum recursion

frames use up memory. Infinite call frames => infinite depth exceeded in compa PiSOﬂ

required memory => out-of-memory error.
To adjust max recursive depth limit, see: sys.setrecursionlimit()

https://stackoverflow.com/a/3323013

Why Recursion?

- “After Abstraction, Recursion is probably the 29 biggest
idea in this course”

-“It's tremendously useful when the problem is self-
similar”

-“It's no more powerful than iteration, but often leads to
more concise & better code”

«“It's more ‘'mathematical”
-“It embodies the beauty and joy of computing”

(Aside) Tips for success

- In my view, this class has suddenly increased in scope/difficulty.
- Litmus test: at this point, we ideally expect you to be fairly fluent with Python:

- Notably, be comfortable reading Python, writing Python from scratch, moditying existing
Python

- It's OK if you you're not there yet, but do keep this as your “north star”.

- Programming is a craft you can only learn by doing (and not only by watching lectures or
reading books/slides/etc).

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(Aside) Tips for success

- Warning: if you're struggling with basic # Write a function that, given a list
Python syntax, you are at risk of falling # of numbers, returns a new list with
behind, as the rest of the course will # every number squared. Use a for-loop.
continue rapidly building on top of Python., def square_nums(nums):

-T|p:l|fyou re feelmgvvgak here, Id.pr|or|t|ze s3> square nums([2, 4, 5, 10])
getting comfortable with Python first (4, 16, 25, 100]
before embarking on more complicated wwn
topics like recursion. out = []

- if you'd like, reach out on Ed for ideas on how to catch up! for num in nums:

out.append(num ** 2)
return out

Litmus test: at this point, we @
expect you to be able to define this

function on your own. Considered

an “easy” problem.

Tip: If this doesn’t feel “easy” yet,
practice until it does!

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(Aside) Tips for success. Any questions?

- Tip for success: deliberate practice, and being organized.
- “Deliberate practice”: targeted practice on topics you know you aren’t comfortable with.
- It's not time-efficient to practice things you are already comfortable with.

« Though, any practice is better than no practice. But, we don't have infinite time/energy, so best use it strategically

- Ex: "I know I'm not comfortable with recursion. Let me spend an hour doing recursion practice problems /
asking my TA (or Ed) about this tricky recursion problem, etc.

- “Being organized"”: a surprising amount of success in this course (and, college/life in general) is
keeping up with assignment due dates. Establish good organizational habits early!

-« “Meta learning”: aka “learning how to learn effectively”. Very important life skill.
- At the end of the day, we (the teaching staff) want you to succeed!

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

	Slide 1: Recursion
	Slide 2: Recursion
	Slide 3: Announcements
	Slide 4: Announcements: Midterm scheduling!
	Slide 5: Midterm content
	Slide 6: Midterm logistics
	Slide 7: Lecture overview
	Slide 8: (Optional) vee / Fractals
	Slide 9: Recursion: a broad definition
	Slide 10: Recursion application: plants/trees
	Slide 11: Recursion application: plants/trees
	Slide 12: Recursion in Computer Science / Math
	Slide 13: Recursion in Computer Science / Math
	Slide 14: Recursion In Practice
	Slide 15: Toy Example: Countdown
	Slide 16: The Recursive Process
	Slide 17: Recursion
	Slide 18: Learning Objectives
	Slide 19: Example: Palindromes
	Slide 20: Example: Palindromes
	Slide 21: Example: Reverse (iteratively)
	Slide 22: Example: Reverse (iteratively)
	Slide 23: Example: Reverse (recursively)
	Slide 24: Example: Reverse (recursively)
	Slide 25: Example: Reverse (recursively)
	Slide 26: Example: Reverse (recursively)
	Slide 27: Example: Reverse (recursively)
	Slide 28: Example: Reverse (recursively)
	Slide 29: How does the recursion work?
	Slide 30: Iteration vs Recursion: Sum Numbers
	Slide 31: Aside: closed form solutions (Math)
	Slide 32: The Recursive Process
	Slide 33: In Python, how does it work under the hood?
	Slide 34: Another Example: minimum of a sequence
	Slide 35: Recall: Iteration
	Slide 36: Recursion Key concepts – by example
	Slide 37: In words
	Slide 38: Why does it work
	Slide 39: Questions
	Slide 40: Trust …
	Slide 41: Example: infinite loop (recursion)
	Slide 42: Why Recursion?
	Slide 43: (Aside) Tips for success
	Slide 44: (Aside) Tips for success
	Slide 45: (Aside) Tips for success. Any questions?

