

M. C. Escher : Drawing Hands

• HW04, Lab04 due today (11:59 PM PST)

• “(Urgent) Midterm Exam Scheduling” due TOMORROW (7/9 11:59 PM PST)

• HW05, Lab05 due 7/10 (Wed)

• Project01 (“Maps”) is out!

• Checkpoint: due 7/10 (Wed)

• Full project: due 7/18

• New weekly course survey out in Gradescope (optional, +0.5 extra credit pts)

• IMPORTANT: Complete the “Midterm Exam Scheduling” form on Gradescope

• Due: Tuesday July 9th, 11:59 PM PST

• It is required that every student fill this out. If you don’t fill this out, you will risk
missing the midterm.

• Please, please do this ASAP! Thank you!

• (DSP students with +50% exam time) We have sent you a Google Form to
schedule your exam. Please fill this out ASAP!

• But, you should still fill out the above Gradescope “Midterm Exam Scheduling”
form as well!

https://www.gradescope.com/courses/786589/assignments/4623242/review_grades

• Midterm will cover content from start of course up to (and including)
OOP+Inheritance, aka:

• Start (inclusive): Lecture 01: “Welcome & Intro” (6/17)

• End (inclusive): Lecture 15: “OOP – Inheritance” (7/15)

• Midterm will be done through Zoom + Gradescope

• Study tip: past C88C exams can be found here:
https://c88c.org/sp24/articles/resources.html#past-midterms

• Take a look to get a sense of what C88C exams tend to look like. (I highly, highly
encourage this)

• “Be prepared” – Boy Scouts

• “Luck is when preparation meets opportunity” – Roman philosopher Seneca

https://c88c.org/sp24/articles/resources.html#past-midterms

• The midterm will be held over Zoom + Gradescope

• You must have your camera + screen sharing on during the entire exam, and we will
be doing screen+camera recording.

• You must take the exam in a quiet room with no other students present

• Things to bring to the exam (and nothing else!):

• Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine,
eg: Passport, driver’s license, etc.

• (Optional) Five (5) pages of handwritten (not typed!) notes

• (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser.

• We will provide everyone with a 1-2 page digital PDF of additional reference

• Other than the above notes, the exam will be closed book, closed notes.
• (For more info, stay tuned for an Ed post)

• Recursion

• Recursion in Python

• Iteration (for/while) vs recursion

• Identifying recursive structure of problems

vee

• python3 –i 11-Recursion.py

• This uses Turtle Graphics.

• The turtle module is really cool, but not something you need to learn

• vee is the one recursive problem that doesn't have a base case

• But fractals in general are a fun way to visualize self-similar structures

• Use the following keys to play with the demo

• Space to draw

• C to Clear

• Up to add "vee" to the functions list

• Down to remove the "vee" functions from the list.

• Some cool variations on vee, seen in Snap! (the language of CS10)

• More Fractals

https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=nathalierun&collection=Vee&page_number=2
https://snap.berkeley.edu/collection?username=nathalierun&collection=Fractals
https://snap.berkeley.edu/collection?username=snapcloud&collection=Fractals

• Recursion occurs when the definition of a concept

or process depends on a simpler or previous

version of itself. (from: Wikipedia)

https://en.wikipedia.org/wiki/Recursion

• Fun application: artificial plants/trees built via recursively-defined

rules

(Step 1) Start with a line segment.

(Step 2) Replace the line segment with 5 line segments as pictured, each 1/3 the length of

the original.

(Step N) Replace each segment in step n-1 with a reduced copy of the step n-1 figure.

Source:

http://guyhaas.com/bfoit/itp/Recursi

onInNature/RecursionInNature.html

http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html
http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html

Source:

http://guyhaas.com/bfoit/itp/Recursi

onInNature/RecursionInNature.html

http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html
http://guyhaas.com/bfoit/itp/RecursionInNature/RecursionInNature.html

• Sometimes, a problem or process is easiest to describe via a recursive definition.

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

• Recursive definition: Fibonacci(n) = Fibonacci(n – 1) + Fibonacci(n – 2)

•

Source: https://mathmonks.com/fibonacci-sequence

https://mathmonks.com/fibonacci-sequence

• Searching for a file in a file system

• To find a file: starting from the
current directory, examine the files in
the current directory.

• If there is another directory, then
(recursively) search for the file in
that subdirectory.

• In that subdirectory: if there is a
subdirectory, search for the file in that
subdirectory

• …and so on…

Source: https://mac-

optimization.bestreviews.net/how-to-restore-

system-files-on-macos/

A Folder contains:
- Files
- Folders Recursion!

https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/
https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/
https://mac-optimization.bestreviews.net/how-to-restore-system-files-on-macos/

• Key idea: A recursive function operates by solving smaller
sub-problems

• “Smaller sub-problems” -> recursive function calls

• Compared to a for-loop, while loop, we will not directly
specify how many times we need to make a function call.

A recursive function calls itself in its body:

15

def countdown(n):
if n == 0:

print('Blastoff!')
else:

print(n)
countdown(n - 1)

>>> countdown(5)
5
4
3
2
1
Blastoff

Recursive call!

Recursive solutions involve two major parts:

 Base case(s), the problem is simple enough to be solved
directly

 Recursive case(s). A recursive case has three
components:

 Divide the current problem into one or more simpler or
smaller parts

 Invoke the function (recursively) on each part, and

 Combine the solutions of the parts into a solution for the
current problem.

• Compare Recursion and Iteration to each other

• Translate some simple functions from one method to another

• Write a recursive function

• Understand the base case and a recursive case

18

• Definition: Palindromes are the same word
forwards and backwards.

• Examples:

• C88C

• racecar

• LOL

• a man a plan a canal panama

• aibohphobia

• The fear of palindromes.

• https://czechtheworld.com/best-
palindromes/#palindrome-words

19

“Bob” – Weird Al Yankovic

(Lyrics contain only palindromes!)

“I, man, am Regal, a German am I

Never odd or even

If I had a Hi-Fi

Madam, I'm Adam

Too hot to hoot”

https://czechtheworld.com/best-palindromes/#palindrome-words
https://czechtheworld.com/best-palindromes/#palindrome-words

• Palindromes are the same word forwards and backwards.

• How to define an `is_palindrome(word)` function?

• One way: check if the reversed string is the same as the input string

def is_palindrome(input_str):
return input_str == reverse_str(input_str)

>>> is_palindrome("too hot to hoot")
True
>>> is_palindrome("meow")
False

• Question: How to define `reverse_str()` via iteration (for/while)?

• Notably, let’s not use the [::-1] shortcut. For practice, let’s

implement it once with a for loop, and another with a while loop.

def reverse_str_for(input_str):
FILL ME IN

def reverse_str_while(input_str):
"""
>>> reverse_str_while('hello')
'olleh'
""“
FILL ME IN

• Question: How to define `reverse_str()` via iteration (for/while)?

• Notably, let’s not use the [::-1] shortcut. For practice, let’s

implement it once with a for loop, and another with a while loop.

def reverse_str_for(s):
result = ''
for letter in s:

result = letter + result
return result

def reverse_str_while(s):
"""
>>> reverse_str_while('hello')
'olleh'
"""
result = ''
while s:

first = s[0]
s = s[1:]
result = first + result

return result

Note: there are many other ways to do this. For instance, in the

while-loop implementation we could have iterated backwards

over the string via indexing.

• Question: How to define `reverse_str()` as a recursive process in

the following manner?

 Base case(s), the problem is simple enough
to be solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the current problem into one or
more simpler or smaller parts

 Invoke the function (recursively) on each
part, and

 Combine the solutions of the parts into a
solution for the current problem.

"hello" -> "olleh"

(Hint) Recursive structure of problem:

If I reversed the substring “ello” -> “olle”, how

do I use this partial result “olle” to solve my

current problem of reversing “hello”?

Answer: “olle” + “h” -> “olleh”, or in code:

reverse_str(“hello”) is reverse_str(“ello”) + “h”

Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[0]

Solve smaller problem

(Divide+Invoke)
Combine smaller solution to

solve the current problem

• Question: How to define `reverse_str()` as a recursive process in

the following manner?

 Base case(s), the problem is simple enough
to be solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the current problem into one or
more simpler or smaller parts

 Invoke the function (recursively) on each
part, and

 Combine the solutions of the parts into a
solution for the current problem.

"hello" -> "olleh"

(Hint) Base cases

What are the simplest (“trivial”) strings to

reverse?

Empty string, string with one character

reverse_str(“”) -> “”

reverse_str(“o”) -> “o”

• Now that we’ve identified the recursive process for string reversal,

let’s translate it into Python code

 Base case(s), the problem is simple enough
to be solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the current problem into one or
more simpler or smaller parts

 Invoke the function (recursively) on each
part, and

 Combine the solutions of the parts into a
solution for the current problem.

"hello" -> "olleh"

Base cases

What are the simplest (“trivial”) strings to reverse?

reverse_str(“”) -> “”

reverse_str(“o”) -> “o”

Recursive structure

“olle” + “h” -> “olleh”, or in code:

reverse_str(“hello”) is reverse_str(“ello”) + “h”

Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[0]

• Now that we’ve identified the recursive process for string reversal,

let’s translate it into Python code

"hello" -> "olleh"

Base cases

What are the simplest (“trivial”) strings to reverse?

reverse_str(“”) -> “”

reverse_str(“o”) -> “o”

Recursive structure

“olle” + “h” -> “olleh”, or in code:

reverse_str(“hello”) is reverse_str(“ello”) + “h”

Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[0]

def reverse_str(s):
Base cases
FILL ME IN
Recursive cases
FILL ME IN

Question: how to fill in the

base cases?

• Now that we’ve identified the recursive process for string reversal,

let’s translate it into Python code

"hello" -> "olleh"

Base cases

What are the simplest (“trivial”) strings to reverse?

reverse_str(“”) -> “”

reverse_str(“o”) -> “o”

Recursive structure

“olle” + “h” -> “olleh”, or in code:

reverse_str(“hello”) is reverse_str(“ello”) + “h”

Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[0]

def reverse_str(s):
Base cases
if len(s) == 0 or len(s == 1):

return s
Recursive cases
FILL ME IN

Question: how to fill in the

recursive cases?

• Now that we’ve identified the recursive process for string reversal,

let’s translate it into Python code

"hello" -> "olleh"

Base cases

What are the simplest (“trivial”) strings to reverse?

reverse_str(“”) -> “”

reverse_str(“o”) -> “o”

Recursive structure

“olle” + “h” -> “olleh”, or in code:

reverse_str(“hello”) is reverse_str(“ello”) + “h”

Or, more generally:

reverse_str(s) is reverse_str(s[1:]) + s[0]

def reverse_str(s):
Base cases
if len(s) == 0 or len(s) == 1:

return s
Recursive cases
return reverse_str(s[1:]) + s[0]

• Our algorithm in words:

• Take the first letter, put it at the end

• The beginning of the string is the reverse of the rest.

reverse('ABC')

→ reverse('BC') + 'A'

→ reverse('C') + 'B' + 'A

→ 'C' + 'B' + 'A

→ 'CBA'

29

def reverse_str(s):
Base cases
if len(s) == 0 or len(s) == 1:

return s
Recursive cases
return reverse_str(s[1:]) + s[0]

Iteratively
(For loop):

def sum_for(n):
s = 0
for i in range(0, n + 1):

s = s + i
return s

def sum_while(n):
s = 0
i = 0
while i < n:

i = i + 1
s = s + i

return s

Iteratively
(While loop):

def sum_recurse(n):
if n == 0:

return 0
return n + sum_recurse(n - 1)

Recursively

31

def sum_recurse(n):
if n == 0:

return 0
return n + sum_recurse(n - 1)

def sum_closed_form(n):
return (n * (n + 1)) / 2

Sometimes, a recursive math function will have a closed form solution!
In this class: even if you know the closed-form solution, and we ask you to
implement it recursively: don’t just use the closed-form solution ☺

def fib(n):
if n <= 1:

return n
return fib(n - 1) + fib(n - 2)

g = (1 + 5**.5) / 2 # Golden ratio.
def fib_closed_form(N):

return int((g**N - (1-g)**N) / 5**.5)

For the curious (beware, deep math!):

https://en.wikipedia.org/wiki/Fibonacci_sequence#Closed-form_expression

https://en.wikipedia.org/wiki/Fibonacci_sequence#Closed-form_expression

Recursive solutions involve two major parts:

 Base case(s), the problem is simple enough to be
solved directly

 Recursive case(s). A recursive case has three
components:

 Divide the problem into one or more simpler or
smaller parts

 Invoke the function (recursively) on each part, and

 Combine the solutions of the parts into a solution for
the problem.

• Each recursive call gets its own local variables

• Just like any other function call

• Computes its result (possibly using additional calls)

• Just like any other function call

• Returns its result and returns control to its caller

• Just like any other function call

• The function that is called happens to be itself

• Called on a simpler problem

• Eventually stops on the simple base case

• Recursion over sequence length

def first(s):
"""Return the first element in a sequence."""
return s[0]

def rest(s):
"""Return all elements in a sequence after the first"""
return s[1:]

def min_r(s):
“””Return minimum value in a sequence.”””
if len(s) == 1:

return first(s)
else:

return min(first(s), min_r(rest(s)))

Base Case

Recursive Case

indexing an element of a
sequence

Slicing a sequence of elements

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i*i
return accum

1. Initialize the “base” case of no iterations

2. Starting value

3. Ending value

4. New loop variable value

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

1. Test for simple “base” case 2. Solution in simple “base” case

3. Assume recusive solution
to simpler problem 4. ”Combine” the simpler part

of the solution, with the
recursive case

• The sum of no numbers is zero

• The sum of 12 through n2 is the

• sum of 12 through (n-1)2

• plus n2

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

sum_of_squares(3)

sum_of_squares(3) => sum_of_squares(2) + 3**2
=> sum_of_squares(1) + 2**2 + 3**2
=> sum_of_squares(0) + 1**2 + 2**2 + 3**2
=> 0 + 1**2 + 2**2 + 3**2 = 14

• Question: for each, in what order do we sum the squares ?

def sum_of_squares(n):
accum = 0
for i in range(1,n+1):

accum = accum + i**2
return accum

def sum_of_squares(n):
if n < 1:

return 0
else:

return sum_of_squares(n-1) + n**2

def sum_of_squares(n):
if n < 1:

return 0
else:

return n**2 + sum_of_squares(n-1)

accum = 0

accum += 1**2

accum += 2**2

…

accum += n**2

Output = ((((0) + 1**2) + 2**2) + …) + n**2 Output = n**2 + ((n-1)**2 + ((n-2)**2 + …) + 0)))

Hint: Python always evaluates left-to-right

• The recursive “leap of faith” works as long as we hit the base case eventually

• What happens if we don’t?

• “Infinite Loop”

• This code will never finish

def sum_recurse_inf_loop(n):
base case
if n == 0:

return 0
BUG: I forgot to do (n-1). Infinite loop!
return n + sum_recurse_inf_loop(n)

>>> sum_recurse_inf_loop(3)
Traceback (most recent call last):
File

"C:\Users\Eric\c88c\lectures\lecture11\lecture11.py",
line 96, in <module>

print(sum_recurse_inf_loop(3))
File

"C:\Users\Eric\c88c\lectures\lecture11\lecture11.py",
line 94, in sum_recurse_inf_loop

return n + sum_recurse_inf_loop(n)
...
[Previous line repeated 995 more times]
File

"C:\Users\Eric\c88c\lectures\lecture11\lecture11.py",
line 91, in sum_recurse_inf_loop

if n == 0:

RecursionError: maximum recursion
depth exceeded in comparison

Aside: By default, Python has a maximum limit on

how much recursive “depth” is allowed before it

terminates the program.

If Python didn’t have this max limit, then our code

would have run forever!

Or, to be more precise: eventually our CPU would run

out of memory and crash. This is because function

frames use up memory. Infinite call frames => infinite

required memory => out-of-memory error.
To adjust max recursive depth limit, see: sys.setrecursionlimit()

https://stackoverflow.com/a/3323013

• “After Abstraction, Recursion is probably the 2nd biggest
idea in this course”

• “It’s tremendously useful when the problem is self-
similar”

• “It’s no more powerful than iteration, but often leads to
more concise & better code”

• “It’s more ‘mathematical’”

• “It embodies the beauty and joy of computing”

• …

• In my view, this class has suddenly increased in scope/difficulty.

• Litmus test: at this point, we ideally expect you to be fairly fluent with Python:

• Notably, be comfortable reading Python, writing Python from scratch, modifying existing
Python

• It’s OK if you you’re not there yet, but do keep this as your “north star”.

• Programming is a craft you can only learn by doing (and not only by watching lectures or
reading books/slides/etc).

• Warning: if you’re struggling with basic
Python syntax, you are at risk of falling
behind, as the rest of the course will
continue rapidly building on top of Python.

• Tip: If you’re feeling weak here, I’d prioritize
getting comfortable with Python first
before embarking on more complicated
topics like recursion.

• if you’d like, reach out on Ed for ideas on how to catch up!

Write a function that, given a list
of numbers, returns a new list with
every number squared. Use a for-loop.
def square_nums(nums):

"""
>>> square_nums([2, 4, 5, 10])
[4, 16, 25, 100]
"""
out = []
for num in nums:

out.append(num ** 2)
return out

Litmus test: at this point, we

expect you to be able to define this

function on your own. Considered

an “easy” problem.

Tip: If this doesn’t feel “easy” yet,

practice until it does!

• Tip for success: deliberate practice, and being organized.

• “Deliberate practice”: targeted practice on topics you know you aren’t comfortable with.

• It’s not time-efficient to practice things you are already comfortable with.

• Though, any practice is better than no practice. But, we don’t have infinite time/energy, so best use it strategically

• Ex: “I know I’m not comfortable with recursion. Let me spend an hour doing recursion practice problems /
asking my TA (or Ed) about this tricky recursion problem, etc.

• “Being organized”: a surprising amount of success in this course (and, college/life in general) is
keeping up with assignment due dates. Establish good organizational habits early!

• “Meta learning”: aka “learning how to learn effectively”. Very important life skill.

• At the end of the day, we (the teaching staff) want you to succeed!

	Slide 1: Recursion
	Slide 2: Recursion
	Slide 3: Announcements
	Slide 4: Announcements: Midterm scheduling!
	Slide 5: Midterm content
	Slide 6: Midterm logistics
	Slide 7: Lecture overview
	Slide 8: (Optional) vee / Fractals
	Slide 9: Recursion: a broad definition
	Slide 10: Recursion application: plants/trees
	Slide 11: Recursion application: plants/trees
	Slide 12: Recursion in Computer Science / Math
	Slide 13: Recursion in Computer Science / Math
	Slide 14: Recursion In Practice
	Slide 15: Toy Example: Countdown
	Slide 16: The Recursive Process
	Slide 17: Recursion
	Slide 18: Learning Objectives
	Slide 19: Example: Palindromes
	Slide 20: Example: Palindromes
	Slide 21: Example: Reverse (iteratively)
	Slide 22: Example: Reverse (iteratively)
	Slide 23: Example: Reverse (recursively)
	Slide 24: Example: Reverse (recursively)
	Slide 25: Example: Reverse (recursively)
	Slide 26: Example: Reverse (recursively)
	Slide 27: Example: Reverse (recursively)
	Slide 28: Example: Reverse (recursively)
	Slide 29: How does the recursion work?
	Slide 30: Iteration vs Recursion: Sum Numbers
	Slide 31: Aside: closed form solutions (Math)
	Slide 32: The Recursive Process
	Slide 33: In Python, how does it work under the hood?
	Slide 34: Another Example: minimum of a sequence
	Slide 35: Recall: Iteration
	Slide 36: Recursion Key concepts – by example
	Slide 37: In words
	Slide 38: Why does it work
	Slide 39: Questions
	Slide 40: Trust …
	Slide 41: Example: infinite loop (recursion)
	Slide 42: Why Recursion?
	Slide 43: (Aside) Tips for success
	Slide 44: (Aside) Tips for success
	Slide 45: (Aside) Tips for success. Any questions?

