

• Project01 (“Maps”) Checkpoint due tonight!

• HW05, Lab05 due tonight!

• (Important) Midterm exam scheduling!

2

• IMPORTANT: “Midterm Exam Scheduling” form was due on Gradescope last
night (7/9)

• IF YOU DIDN’T FILL IT OUT: we will send ONE MORE opportunity to schedule
your midterm exam

• If you miss this opportunity: we will assume you are taking the midterm at the
“standard” slot: Wednesday July 17th, 2024, 3 PM – 5 PM PST

• And, if you don’t attend this midterm slot: you won’t be taking the midterm

• (reminder) midterm “clobber” policy: final can replace your midterm

• (DSP students with +50% exam time) We have sent you a Google Form to
schedule your exam. Please fill this out ASAP!

https://www.gradescope.com/courses/786589/assignments/4623242/review_grades

• Midterm will cover content from start of course up to (and including)
OOP+Inheritance, aka:

• Start (inclusive): Lecture 01: “Welcome & Intro” (6/17)

• End (inclusive): Lecture 15: “OOP – Inheritance” (7/15)

• Midterm will be done through Zoom + Gradescope

• Study tip: past C88C exams can be found here:
https://c88c.org/sp24/articles/resources.html#past-midterms

• Take a look to get a sense of what C88C exams tend to look like. (I highly, highly
encourage this)

• “Be prepared” – Boy Scouts

• “Luck is when preparation meets opportunity” – Roman philosopher Seneca

https://c88c.org/sp24/articles/resources.html#past-midterms

• The midterm will be held over Zoom + Gradescope

• You must have your camera + screen sharing on during the entire exam, and we will
be doing screen+camera recording.

• You must take the exam in a quiet room with no other students present

• Things to bring to the exam (and nothing else!):

• Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine,
eg: Passport, driver’s license, etc.

• (Optional) Five (5) pages of handwritten (not typed!) notes

• (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser.

• We will provide everyone with a 1-2 page digital PDF of additional reference

• Other than the above notes, the exam will be closed book, closed notes.
• (For more info, stay tuned for an Ed post)

• Tree recursion

• aka recursive functions that make multiple recursive calls per “level”

• call stack looks like a “tree”

• Function domain/range

6

• Write Recursive functions with multiple recursive calls

• Understand Recursive Fibonacci

• Understand the the count_change algorithm

• Bonus: Use multiple recursive calls in to sort a list.

7

• Tree Recursion involves multiple recursive calls to solve a problem.

• Drawing out a function usually looks like an “inverted” tree.

• (optional) Revisit the "vee" program from lecture 11.

• Many of these programs can't be written with iteration very easily

• Tip: in principle, you can solve any problem with recursion or iteration. But,
recursion can make some problems simpler.

List all items on your hard disk

• Files

• Folders contain

• Files

• Folders
def process_directory(directory):

for item in directory:
if is_file(item):

process_file(item)
else:

process_directory(item)

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…

• Fib(0) = 0, Fib(1) = 1

• Fib(n) = Fib(n-1) + Fib(n-2)

Source:

https://www.imaginationstationto

ledo.org/about/blog/the-

fibonacci-sequence

https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence
https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence
https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

where fibonacci(1) == 1 and fibonacci(0) == 0

def fib(n):
"""
>>> fib(5)
5
"""
if n < 2:

return n
return fib(n - 1) + fib(n - 2)

Interactive View

https://recursion.vercel.app/

• In practice, recursive fib is slow!

•We can write the program using a for loop.

•How do we translate this? You've done it before!

• Technique is called "dynamic programming". (covered in CS170)

def iter_fib(n):
(n_1, n_2) = (0, 1)
for i in range(0, n):

fib_next = n_1 + n_2
n_1 = n_2
n_2 = fib_next
Note: below update is equivalent to above
Computes n_1+n_2 before updating n_1
(n_1, n_2) = (n_2, n_1 + n_2)

return n_1

• Many number sequences have similar properties

• Catalan numbers

• Pascal's Triangle

• "Branching" Patterns in Biology:

• (Real) Tree branches

• Veins in leaves

• Romanesco Broccoli

• Population growth of animals over N generations

• Some of these structures can be modeled recursively

• Problem Statement:

• Given (an infinite number of) coins, (25¢, 10¢, etc) how many different ways can
I represent 10¢?

• e.g. 5¢ can be made 2 ways: 1 nickel, or 5 pennies

• 10¢ can be made 4 ways: [1x 10¢, 2x 5¢, 1 5¢ + 5 1¢, 10x 1¢]

• Order doesn't matter, 5¢ + 5 1¢ is the same as 5 1¢ + 5¢

• How do we calculate this?

Question: Put on our “recursion” hats, and ask:

what is the recursive structure of this problem?

(base cases, recursive cases)

• change for 25¢ using [25, 10, 5] → 4

• What are possible “smaller” problems?
• Smaller amount of money → use coin

• Fewer coins → “discard” coin

• What is our base case?
• valid count: value is 0 -> return 1

• invalid count: value is < 0, or no coins left -> return 0

•Recursion:
• Divide: split into two problems (smaller amount & fewer coins)

• Combine: addition (# of ways)

def count_change(value, coins):
"""
>>> denominations = [50, 25, 10, 5, 1]
>>> count_change(7, denominations)
2
"""
if value < 0 or len(coins) == 0:

return 0
elif value == 0:

return 1
using_coin = count_change(value - coins[0], coins)
not_using_coin = count_change(value, coins[1:])
return using_coin + not_using_coin

• Interactive view

https://recursion.vercel.app/

• We're partitioning coins, but these could be bills, or other currency

• Many tree recursive questions follow a similar recursive step

• Notice how instead of a conditional, we combine the results of two possible
options

• We make recursive calls for all possible outcomes, then the base case(s) handle
the conditional logic.

• The Knapsack Problem: Maximize the value of items thrown in a bag up to
some "weight"

• Anything relating to Family Trees, Relationships, Social Networks

• Count the Nth degree of "followers of followers" of some one

• Many of these involve graphs which you'll learn in CS61B

• Subsets, Combinations, Permutations

• Longest Common Subsequence of 2 sets

• Imagine 2 words, or 2 strings of DNA

• Recall: map(fn, sequence) is a higher-order function that applies fn(item) to
each item in sequence.

>>> map(lambda x: x * 2, [1, 2, 3])
[2, 4, 6]

Question: re-implement map() as a

recursive function, map_recurse(). Do not

use for/while loops, list comprehensions, or

the built-in map().

Hint: put on our “recursion” hat. What is the

recursive structure? (base cases, recursive

cases)

def map_recurse(fn, seq):
FILL ME IN

• Recall: map(fn, sequence) is a higher-order function that applies fn(item) to
each item in sequence.

>>> map(lambda x: x * 2, [1, 2, 3])
[2, 4, 6]

Base case:

Map-ing an empty list -> return empty list

Recursive case:

Apply `fn` to the first seq element, and

concatenate this to the result of map-ing the

rest of the sequence.

def map_recurse(fn, seq):
if not seq:

return []
return [fn(seq[0])] + map_recurse(fn, seq[1:])

• (Visualization) Call stack

def map_recurse(fn, seq):
if not seq:

return []
return [fn(seq[0])] + map_recurse(fn, seq[1:])

fn_square = lambda x: x * 2
map_recurse(fn_double, [1, 2, 3])
-> [fn_double(1)] + map_recurse(fn_double, [2, 3])
-> [fn_double(1)] + ([fn_double(2)] + map_recurse(fn_double, [3]))
-> [fn_double(1)] + ([fn_double(2)] + ([fn_double([3])] + map_recurse(fn_double, [])))
-> [fn_double(1)] + ([fn_double(2)] + ([fn_double([3])] + []))
-> [fn_double(1)] + ([fn_double(2)] + [6])
-> [fn_double(1)] + [4, 6]
-> [2] + [4, 6]
-> [2, 4, 6]

Base case! Empty list

• Now, let’s look at `map_deep()`, where the input list can have nested lists.
Notably, map_deep() should preserve the nested structure.

>>> map_deep(fn_square, [1, [2], [3, [4]]])
[2, [4], [6, [8]]]

Question: what is the recursive structure of this problem? (base cases,

recursive cases)

• Now, let’s look at `map_deep()`, where the input list can have nested lists.
Notably, map_deep() should preserve the nested structure.

>>> map_deep(fn_square, [1, [2], [3, [4]]])
[2, [4], [6, [8]]]

Base cases:

Map_deep()-ing an empty list -> return empty

list

Recursive cases:

(First val) if the first element is a list, transform

it via map_deep(). Else, transform it via fn()

Then, concatenate the transformed first val to

the result to map_deep()-ing the rest of the list.

Compare to “shallow” map_recurse()

Base case:

Map-ing an empty list -> return empty list

Recursive case:

Apply `fn` to the first seq element, and

concatenate this to the result of map-ing the

rest of the sequence.

New: in map_deep(), we may perform a recursive call

when transforming the first val.

In map_recurse() we simply apply fn() to the first val.

• To implement map_deep(), first a tip: `isinstance(thing, type)` lets you check
the type of an object/expression:

>>> isinstance([1, 2, 3], list)
>>> isinstance([1, 2, 3], dict)
>>> x = 42
>>> isinstance(x, int)

def map_deep(fn, seq):
if not seq:

return []
else:

if isinstance(seq[0], list):
first_val = map_deep(fn, seq[0])

else:
first_val = fn(seq[0])

return [first_val] + map_deep(fn, seq[1:])

Link: https://recursion.vercel.app/

Tip: this website is a little finicky,

limitations:

- Function must be named fn()

- Lambda arguments are not

supported. So, I had to hard-

code the square_fn in the

function body

def fn(seq):
func = lambda x: x * 2
if not seq:

return []
else:

if isinstance(seq[0], list):
first_val = fn(seq[0])

else:
first_val = func(seq[0])

return [first_val] + fn(seq[1:])

fn([1, [2], [3, [4]]])

https://recursion.vercel.app/

Link:

https://recursion.vercel.app/

Observation:

“Deep” map

(LHS) looks like a

“tree”, hence

“Tree recursion”

“Shallow” map

(RHS) has no

“branches”.

def fn(seq):
func = lambda x: x * 2
if not seq:

return []
return [func(seq[0])] + fn(seq[1:])

fn([1, 2, 3, 4])

https://recursion.vercel.app/

• A handy tip about working with functions is to keep track of their expected
inputs and outputs, aka “domain” and “range”

• The domain of a function is the number and types a function accepts as input

• The range of a function is the output type(s) that the function returns

def double_num(num):
"""
>>> double_num(42)
84
"""
Domain: a number (eg int/float)
Range: a number (int/float)
return num * 2

def sum_nums(nums):
"""
>>> sum_nums([1, 2, 3])
6
"""
Domain: a List of numbers
Range: a number
out = 0
for num in nums:

out += num
return out

• A handy tip about working with functions is to keep track of their expected
inputs and outputs, aka “domain” and “range”

• The domain of a function is the number and types a function accepts as input

• The range of a function is the output type(s) that the function returns

def map_recurse(fn, seq):
"""
>>> map_recurse(lambda x: x * 2, [1, 2, 3])
[2, 4, 6]
"""
Domain: (arg1) function of one arg, (arg2) sequence
Range: a sequence
if not seq:

return []
return [fn(seq[0])] + map_recurse(fn, seq[1:])

Question: what is the

domain and range of this

function?

• When writing Python code (particularly tree recursion), my advice is to always
keep track of and respect a function’s domain and range!

• A common class of bugs (both in C88C, and in “the real world”) is:

• (1) Calling a function with the wrong arg types, or

• (2) Expecting a function returns type X, when it actually returns type Y

• Example: let’s examine a buggy implementation of map_deep()

def map_deep_buggy(fn, seq):
Domain: (arg1) function of one arg,
(arg2) list of int OR nested list(s)
Range: list
if not seq:

return []
else:

first_val = map_deep_buggy(fn, seq[0])
return first_val + map_deep_buggy(fn, seq[1:])

Question: I claim there is a bug in this code. Can

you (1) identify the bug and (2) relate it to function

domain and range?

Bug: the `first_val` recursive call

violates `map_deep_buggy()`’s

domain, as we may pass a

NUMBER instead of a LIST as the

second arg.

Possible types: number, List

This domain violation

should ring alarm bells in

your head that this

implementation is wrong.

def map_deep_buggy(fn, seq):
Domain: (arg1) function of one arg,
(arg2) list of int OR nested list(s)
Range: list
if not seq:

return []
else:

first_val = map_deep_buggy(fn, seq[0])
return first_val + map_deep_buggy(fn, seq[1:])

Possible types: number, List

This domain violation should

ring alarm bells in your head

that this implementation is

wrong.

Traceback (most recent call last):
File

"C:\Users\Eric\c88c\lectures\lecture13\lecture
13.py", line 147, in <module>

print(map_deep_buggy(lambda x: x * 2, [1,
[2, [3]]]))
File

"C:\Users\Eric\c88c\lectures\lecture13\lecture
13.py", line 144, in map_deep_buggy

first_val = map_deep_buggy(fn, seq[0])
File

"C:\Users\Eric\c88c\lectures\lecture13\lecture
13.py", line 144, in map_deep_buggy

first_val = map_deep_buggy(fn, seq[0])
TypeError: 'int' object is not subscriptable

>>> map_deep_buggy(lambda x: x * 2, [1, [2,
[3]]])

Explanation: We try to call `map_deep_buggy(fn,

1)`, which errors because we can’t subscript an

integer: `1[0]` -> error.

Tip: learn how to read and interpret Python error messages.

Useful not only in C88C, but also your future classes + career.

• Python doesn’t have a strict static system like “statically typed” languages like
Java, C/C++. Instead, it’s a dynamically typed language.

• Consequence: in Python, we can accidentally pass the wrong types into
functions. This isn’t possible in statically-typed languages like Java/C/C++

•def map_shallow(fn, lst):
Domain: (arg1) function of one arg
(arg2) list
Range: list
if not lst:

return []
return [fn(lst[0])] + map_shallow(fn, lst[1:])

>>> map_shallow(lambda x: x * 2, 42)
…
line 144, in map_deep_buggy

first_val = map_deep_buggy(fn, seq[0])
TypeError: 'int' object is not subscriptable

• In your future Python work, you may enjoy annotating functions with their
domain/range via python3.5+’s built-in type-annotation hints (typing package)

from typing import List, Callable

def map_shallow_typehint(fn: Callable, lst: List[int]) -> List:
Domain: (arg1) function of one arg
(arg2) list
Range: list
if not lst:

return []
return [fn(lst[0])] + map_shallow_typehint(fn, lst[1:])

>>> map_shallow(lambda x: x * 2, 42)
…
line 144, in map_deep_buggy

first_val = map_deep_buggy(fn, seq[0])
TypeError: 'int' object is not subscriptable

`List[int]` means “a list of integers.

`List` implies “a list with elements of

unknown type”

Callable: if you know the exact

input/output types ahead of time, you

can do:

`Callable[[input_type_1, …], out_type]`

Some IDE’s (eg VSCode, PyCharm) can

interpret these type-hints and warn you if

you are passing in the wrong types!

Note: this slide is NOT

required for this class. Take care: type-hints don’t actually do anything, the

above error will still happen. Aka a “fancy comment”

https://docs.python.org/3/library/typing.html

• Tree recursion

• aka recursive functions that make multiple recursive calls per “level”

• call stack looks like a “tree”

• Function domain/range

40

• A fairly simple to sorting algorithm

• Goal: Sort the list by breaking it into partially sorted parts

• Pick a “pivot”, a starting item to split the list

• Remove the pivot from your list

• Split the list into 2 parts, a smaller part and a bigger part

• Then recursively sort the smaller and bigger parts

• Combine everything together: the smaller list, the pivot, then the bigger list

[3, 3, 1, 4, 5, 4, 3, 2, 1, 17]

[3, 1, 3, 2, 1] [4, 5, 4, 17]

[1, 3, 2, 1] []

[1] [3, 2]

[] []

[1]

[2] []

[] []

[2, 3]

[1, 1, 2, 3]

[1, 1, 2, 3, 3]

[4] [5, 17]

[] []

[4]

[] [17]

[] []

[5, 17]

[4, 4, 5, 17]

[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

Smaller than pivot (sorted) Larger than pivot (sorted)

Smaller than

pivot

(unsorted)

Larger than

pivot

(unsorted)

Original (top

level) pivot

• Break the problem into multiple smaller sub-problems, and Solve them
recursively

44

def split(x, s):
return [i for i in s if i <= x], [i for i in s if i > x]

def quicksort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."""
if not s:

return []
else:

pivot = s[0]
smaller, bigger = split(pivot, s[1:])
return quicksort(smaller) + [pivot] + quicksort(bigger)

>>> quicksort([3,3,1,4,5,4,3,2,1,17])
[1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

• https://recursion.vercel.app/

https://recursion.vercel.app/

	Slide 1: Tree Recursion
	Slide 2: Announcements
	Slide 3: Announcements: Midterm scheduling!
	Slide 4: Midterm content
	Slide 5: Midterm logistics
	Slide 6: Today’s Lecture
	Slide 7: Learning Objectives
	Slide 8: Tree Recursion
	Slide 9: Example I
	Slide 10: The Fibonacci Sequence
	Slide 11: The Fibonacci Sequence
	Slide 12: Golden Spirals Occur in Nature
	Slide 13: Fibonacci Code
	Slide 14: Visualizing Fib Recursion:
	Slide 15: But what about the iterative version?
	Slide 16: What's Similar to Fibonacci?
	Slide 17: Count Change
	Slide 18: Counting Change
	Slide 19: Counting Change
	Slide 20: count_change code
	Slide 21: Visualizing Count Change
	Slide 22: Why use problems like count change?
	Slide 23: There are many more recursive problems!
	Slide 24: Exercise: map
	Slide 25: Exercise: map
	Slide 26: Exercise: map
	Slide 27: Exercise: “deep” map
	Slide 28: Exercise: “deep” map
	Slide 29: Tip: isinstance()
	Slide 30: Exercise: “deep” map
	Slide 31: Visualization: map_deep
	Slide 32: Visualization: map_deep vs shallow map
	Slide 33: Tip: function “domain”, “range”
	Slide 34: Tip: function “domain”, “range”
	Slide 35: Tip: function “domain”, “range”
	Slide 36: Tip: function “domain”, “range”
	Slide 37: Tip: function “domain”, “range”
	Slide 38: (Aside) Python types
	Slide 39: (Aside) Python type annotation hints
	Slide 40: Today’s Lecture. Any questions?
	Slide 41: Quicksort
	Slide 42: Quicksort
	Slide 43: QuickSort Example
	Slide 44: Tree Recursion
	Slide 45: Quicksort Visualization

