Computational Structures in Data Science

Tree Recursion

Week 4, Summer 2024. 7/10 (Wed)

Lecture 13

Berkeley

RSITY OF CAL

©@O®S©

Announcements

- Project01 (“Maps”) Checkpoint due tonight!
- HWO5, Lab05 due tonight!
- (Important) Midterm exam scheduling!

Announcements: Midterm scheduling!

- IMPORTANT: “Midterm Exam Scheduling” form was due on Gradescope last
night (7/9)

- [FYOU DIDN'T FILL IT OUT: we will send ONE MORE opportunity to schedule
your midterm exam

- If you miss this opportunity: we will assume you are taking the midterm at the
‘standard” slot: Wednesday July 17th, 2024, 3 PM - 5 PM PST

- And, if you don't attend this midterm slot: you won't be taking the midterm
- (reminder) midterm “clobber” policy: final can replace your midterm

- (DSP students with +50% exam time) We have sent you a Google Form to
schedule your exam. Please fill this out ASAP!

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://www.gradescope.com/courses/786589/assignments/4623242/review_grades

Midterm content

- Midterm will cover content from start of course up to (and including)
OOP+Inheritance, aka:

. Start (inclusive): Lecture 01: “Welcome & Intro” (6/17)
- End (inclusive): Lecture 15: “O0P - Inheritance” (7/15)
- Midterm will be done through Zoom + Gradescope

- Study tip: past C88C exams can be found here:
https://c88c.org/sp24/articles/resources.html#past-midterms

- Take a look to get a sense of what C88C exams tend to look like. (I highly, highly
encourage this)

- “Be prepared” - Boy Scouts
- “Luck is when preparation meets opportunity” - Roman philosopher Seneca

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://c88c.org/sp24/articles/resources.html#past-midterms

Midterm logistics

- The midterm will be held over Zoom + Gradescope

- YOUu must have your camera + screen sharing on during the entire exam, and we will
be doing screen+camera recording.

- You must take the exam in a quiet room with no other students present

- Things to bring to the exam (and nothing elsel):

- Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine,
eg: Passport, driver’s license, etc.

- (Optional) Five (5) pages of handwritten (not typed!) notes
- (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser.

- We will provide everyone with a 1-2 page digital PDF of additional reference

« Other than the above notes, the exam will be closed book, closed notes.
- (For more info, stay tuned for an Ed post)

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Today’s Lecture

- Tree recursion
- aka recursive functions that make muiltiple recursive calls per “level”
- call stack looks like a “tree”

- Function domain/range

5

3 2

2 1 1 1
1 1 0

1 0

Learning Objectives

- Write Recursive functions with multiple recursive calls
- Understand Recursive Fibonacci

- Understand the the count_change algorithm

- Bonus: Use multiple recursive calls in to sort a list.

Tree Recursion

- Tree Recursion involves multiple recursive calls to solve a problem.
- Drawing out a function usually looks like an “inverted” tree.

- (optional) Revisit the "vee" program from lecture 11.

- Many of these programs can't be written with iteration very easily

- Tip: in principle, you can solve any problem with recursion or iteration. But,
recursion can make some problems simpler.

Example I

List all items on your hard disk

P e g natural_gas_179x93.png
== templates

------ StockInfo.hkml
e stockiwidget, hkml

E- lecansult -
[E;; gravelleconsulting . Files
EI[E: scripks
(= dili - Folders contain
E dD]'D |
- doiox - Files
=7 widgets F
e - Folders
[s
T def process_directory(directory):
P _ StockInfo.css for [ditem in directory:
- E= images if ds_file(item):
5 ----- g crude_oil 17995, png process_file(item)
- g gasoline_173x93.png else:
..... g gold_175x98. png process_directory(item)

Computational Structures in Data Science

The Fibonacci Sequence

©@O®S©

The Fibonacci Sequence

-0, 1,1,2,3,5,8 13,21, 34,55, 89...

ledo.org/about/blog/the-

fibonacci-sequence

- Fib(0) =0, Fib(1) =1
- Fib(n) = Fib(n-1) + Fib(n-2)

13
21

https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence
https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence
https://www.imaginationstationtoledo.org/about/blog/the-fibonacci-sequence

Golden Spirals Occur in Nature

GO BEARS

Fibonacci Code

fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)
where fibonacci(l) == 1 and fibonacci(®) == 0

def fib(n):

>>> fib(5)

5

if n < 2:
return n

return fib(n - 1) + fib(n - 2)

Visualizing Fib Recursion:

Interactive View .
fib(5)
3 2
fib(4) fib(3)

2 1 1 1
1 1 0

(1 0

1 0

https://recursion.vercel.app/

But what about the iterative version?

-INn practice, recursive fip is slow!

-We can write the program using a for loop.

-How do we translate this? You've done it before!
- Technique is called "dynamic programming". (covered in C5170)

def iter_fib(n):

(n_1, n_2) = (0, 1)

for i in range(9, n):
fib next = n 1 + n 2
nl=n2
n 2 = fib_next
Note: below update is equivalent to above
Computes n_1+n_2 before updating n_1
(n1, n2) = (n2, n1+ n 2)

return n_1

What’s Similar to Fibonacci?

- Many number sequences have similar properties
- Catalan numbers
- Pascal's Triangle
- "Branching" Patterns in Biology:

- (Real) Tree branches YA

Veins in leaves

Romanesco Broccoli

Figure 6: Compound inflorescences

Population growth of animals over N generations

Some of these structures can be modeled recursively

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Computational Structures in Data Science

Count

©@O®S©

Counting Change

- Problem Statement;

- Given (an infinite number of) coins, (25¢, 10¢, etc) how many different ways can
| represent 10¢7

- e.g. 5C can be made 2 ways: 1 nickel, or 5 pennies
-+ 10C can be made 4 ways: [1x 10¢, 2x 5C, 1 5C+ 5 1¢, 10x 1¢]
- Order doesn't matter, 5C +51Cisthe sameas5 1C + 5C

- How do we calculate this?

Question: Put on our “recursion” hats, and ask:
what is the recursive structure of this problem?
(base cases, recursive cases)

Counting Change

- change for 25¢C using [25, 10, 5] 2 4

- What are possible “smaller” problems?
- Smaller amount of money — use coin
- Fewer coins — “discard” coin
- \What is our base case?
- valid count: value is O -> return 1
- invalid count: value is < 0, or no coins left -> return O
- Recursion:
- Divide: split into two problems (smaller amount & fewer coins)
- Combine: addition (# of ways)

count_change code

def count_change(value, coins):
>>> denominations = [50, 25, 10, 5, 1]
>>> count_change(7, denominations)
2
if value < @ or len(coins) ==
return 0
elif value ==
return 1
using coin = count _change(value - coins[©@], coins)
not using coin = count _change(value, coins[1:])
return using coin + not _using coin

Visualizing Count Change

< PI’BV —

° | nte ra CU\/e \/| ew count _change(25 (25, 10, 5])

//\\

count_change(25,[10, 5]) count _change(0,[25, 10, 5])]

E:ount_change(lS,[lO, S]D

AR

count _change(15 [5])

// \\

[count_change(ZO [])] (count _change(15, [5])] (count change(15, []) count _change(10, [5])] [count_changc(S,[S]))

[NN
count_change(15,[]) count_change(10,[]) (countﬁchange(S,[S])] (countﬁchange(s,[])j

count_change(5,[10, 5])

count_change(25,[])

count_change(-5,[10, 5])

(=}

count_change(10,[5]) count_change(0,[5])

count_change(5,[]) count_change(0,[5])

https://recursion.vercel.app/

Why use problems like count change?

- We're partitioning coins, but these could be bills, or other currency
- Many tree recursive questions follow a similar recursive step

- Notice how instead of a conditional, we combine the results of two possible
options

- We make recursive calls for all possible outcomes, then the base case(s) handle
the conditional logic.

There are many more recursive problems!

- The Knapsack Problem: Maximize the value of items thrown in a bag up to
some "weight"

- Anything relating to Family Trees, Relationships, Social Networks
- Count the Nth degree of "followers of followers" of some one
- Many of these involve graphs which you'll learn in CS61B

- Subsets, Combinations, Permutations

- Longest Common Subsequence of 2 sets
- Imagine 2 words, or 2 strings of DNA

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: map

- Recall: map(fn, sequence) is a higher-order function that applies fn(item) to
each item in sequence.

>>> map(lambda x: x * 2, [1, 2, 3])
[2, 4, 6]

def map_recurse(fn, seq):
Question: re-implement map() as a # FILL ME IN
recursive function, map_recurse(). Do not
use for/while loops, list comprehensions, or
the built-in map().

Hint: put on our “recursion” hat. What is the

recursive structure? (base cases, recursive
cases)

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: map

- Recall: map(fn, sequence) is a higher-order function that applies fn(item) to
each item in sequence.

>>> map(lambda x: x * 2, [1, 2, 3])

[2, 4, 6]
def map_recurse(fn, seq):
Base case: if not seq:
Map-ing an empty list -> return empty list return []

return [fn(seq[@])] + map_recurse(fn, seq[l:])

Recursive case:

Apply "fn" to the first seq element, and
concatenate this to the result of map-ing the
rest of the sequence.

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: map

. (Visualization) Call stack

fn_square = lambda x: x * 2
map_recurse(fn_double, [1, 2, 3])
-> [fn_double(1)] + map_recurse(fn_double, [2, 3])
-> [fn_double(1)] + ([fn_double(2)] + map_recurse(fn_double, [3]))
-> [fn_double(1)] + ([fn_double(2)] + ([fn_double([3])] + map_recurse(fn_double, [])))
-> [fn_double(1)] + ([fn_double(2)] + ([fn_double([3])] + []))
-> [fn_double(1)] + ([fn_double(2)] + ///
+

[6])
-> [fn_double(1)] [4, 6] ‘\\\\\

-> [2] + [4, 6] Base case! Empty list
-> [2, 4, 6]

def map_recurse(fn, seq):
if not seq:
return []
return [fn(seq[@])] + map_recurse(fn, seq[l:])

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: “deep” map

- Now, let's look at “map_deep() ", where the input list can have nested lists.
Notably, map_deep() should preserve the nested structure.

>>> map_deep(fn_square, [1, [2], [3, [4]11])
[2, [4], [6, [8]]]

Question: what is the recursive structure of this problem? (base cases,
recursive cases)

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: “deep” map

- Now, let's look at “map_deep() ", where the input list can have nested lists.
Notably, map_deep() should preserve the nested structure.

>>> map_deep(fn_square, [1, [2], [3, [4]1]1])
[2, [4], [6, [8]]]

Base cases:
Map_deep()-ing an empty list -> return empty
list

Recursive cases:
(First val) if the first element is a list, transform

It via map_deep(). Else, transform it via fn()
Then, concatenate the transformed first val to

the result to map_deep()-ing the rest of the list.

Compare to “shallow” map_recurse()
Base case:
Map-ing an empty list -> return empty list

Recursive case:

Apply fn" to the first seq element, and
concatenate this to the result of map-ing the
rest of the sequence.

New: in map_deep(), we may perform a recursive call
when transforming the first val.
In map_recurse() we simply apply fn() to the first val.

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tip: isinstance()

- To implement map_deep(), first a tip: “isinstance(thing, type) lets you check
the type of an object/expression:

>>> isinstance([1, 2, 3], list)
>>> isinstance([1, 2, 3], dict)
>»> X = 42

>>> isinstance(x, int)

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Exercise: “deep” map

def map deep(fn, seq):
if not seq:
return []
else:
if isinstance(seq[0], list):
first val = map deep(fn, seq[9])
else:
first val = fn(seq[9])
return [first val] + map _deep(fn, seq[l:])

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Visualization: map_deep

C %5 recursionvercelapp hg G

> »

B fullres Tired of GA4? Try Fullres Analytics toda « <
fn([1,[2],[3,[4]11]) returns [2,[4],[6,[8]]]

Link: https://recursion.vercel.app/ _

Tip: this website is a little finicky, ers't:;f'"ed templates v 5
limitations: | -
- Function must be named fno Global variables

- Lambda arguments are not] Pud
supported. So, | had to hard- [41[[6,[811]
code the square_fn in the Recursive function Python @
function body -

1T not seq.
elserjetu“ . [6 [8] []
if isins‘.an:._e(seq[a], '_is?): @‘@
first_val = fn(seq[e])
elsa: . . , o
def fn(seq): retufir?;;:jg_;a?r:—\ii?;gEL:)
func = lambda x: x * 2 [[8]]

if not seq: Options

return []
else: Step-by-step animation
if isinstance(seq[@], list): Memoization

first_val = fn(seq[@]) Dark mode
else: [8] []

first_val = func(seq[@])
return [first_val] + fn(seq[1:]) @
fn([1, [2], [3, [4]11D)
#n([1, [21, (3, [411) [Run |

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://recursion.vercel.app/

Visualization: map_deep vs shallow map

Observation:
“‘Deep” map
(LHS) looks like a
“tree”, hence
“Tree recursion”

“Shallow” map
(RHS) has no
“branches”’.

def fn(seq):
func = lambda x: x * 2
if not seq:
return []
return [func(seq[@])] + fn(seq[1:])

fn([1, 2, 3, 4])

Cc 2% recursion.vercelapp W o [&] 2% recursion.vercel.app

B tulires Tired of GA4? Try Fullres Analytics today. « < » » B fullres

fn([1,[2],[3,[4]1]) returns [2,[4],[6,[8]]]

Pre-defined templates

4 Custom

Custom v [[4],[6,[8]]]
Global variables

‘ Global variables

- Ak

Recursive function

Recursive function python w

'
def fn(seq):
func = lambda x: x * 2
def fn(seq): if not seq:
func = lambda x: x * 2 return []

return [func(seq[e])] + fn(seq[1:])

if not seq:[] * ‘ *
return T
else:] [6,[811] Options
if isinstance(seq[®], list): o
first val = fn(seg[e]) Step-by-step animation
else: Memoization
first_val = func(seq[e])
return [first_val] + fn(seq[1:]) ‘ Dark mode
(8l
Options
Step-by-step animation @
Memoization
Dark mode [84] *[]

2
1]
én([1, (21, [3, [410]) [Run |

fn([1, 2, 3, 4])

Tired of GA4? Try Fullres Analy

Pre-defined templates

* 0@

¢s today. € ¢ I >

n([1,2,3,4]) returns [2,4,6,8]

python v

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Link:
https://recursion.vercel.app/

https://recursion.vercel.app/

Tip: function “domain”, “range”

- A handy tip about working with functions is to keep track of their expected
inputs and outputs, aka “domain” and “range”

- The domain of a function is the number and types a function accepts as input
- The range of a function is the output type(s) that the function returns

def double num(num): def iHT_nums(nums):
>>> double_num(42) >>> sum_nums([1, 2, 3])
84 ?ll 11}
Domain: a number (eg int/float) # Domain: a List of numbers
Range: a number (int/float) # Range: a number
return num * 2 out = 0

for num in nums:
out += num
return out

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tip: function “domain”, “range”

- A handy tip about working with functions is to keep track of their expected
inputs and outputs, aka “domain” and “range”

- The domain of a function is the number and types a function accepts as input
- The range of a function is the output type(s) that the function returns

def map_recurse(fn, seq): Question: what is the

domain and range of this

>>> map_recurse(lambda x: x * 2, [1, 2, 3]) function?

[2, 4, 6]

Domain: (argl) function of one arg, (arg2) sequence
Range: a sequence
if not seq:
return []
return [fn(seq[@])] + map_recurse(fn, seq[l:])

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tip: function “domain”, “range”

- When writing Python code (particularly tree recursion), my advice is to always
keep track of and respect a function’s domain and range!

- A common class of bugs (both in C88C, and in “the real world") is:
- (1) Calling a function with the wrong arg types, or
- (2) Expecting a function returns type X, when it actually returns type Y

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tip: function “domain”, “range”

- Example: let's examine a buggy implementation of map_deep()

def map_deep buggy(fn, seq): Bug: the “first_val" recursive call
Domain: (argl) function of one arg, violates “‘map_deep_buggy() 's

(arg2) list of int OR nested list(s) domain, as we may pass a
Range: list / NUMBER instead of a LIST as the

if not seq: second arg.
return [] Possible types: number, List

else: ——
first _val = map_deep_buggy(fn, seq[@])
return first val + map_deep_buggy(fn, seq[l:])

This domain violation
should ring alarm bells in
your head that this
implementation is wrong.

Question: | claim there is a bug in this code. Can
you (1) identify the bug and (2) relate it to function
domain and range?

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

Tip: function “domain”, “range”

def map_deep buggy(fn, seq): >>> map_deep buggy(lambda x: x * 2, [1, [2,
Domain: (argl) function of one arg, [3111)
(arg2) list of int OR nested list(s)

Range: list Traceback (most recent call last):

. File

f t :

! nﬁetiig [] Possible types: number, List "C:\Users}Eric\c88§\lectures\lecturelB\lecture
else: —t 13.py", line 147, in <module>

print(map_deep buggy(lambda x: x * 2, [1,

[2, [311D))

File
"C:\Users\Eric\c88c\lectures\lecturel3\lecture
13.py", line 144, in map_deep buggy

first val = map_deep buggy(fn, seq[@])
return first val + map_deep buggy(fn, seq[l:])

Explanation: We try to call ‘map_deep_buggy(fn, first _val = map_deep_buggy(fn, seq[0])
1)’, which errors because we can’t subscript an File
integer: "1[0] -> error. "C:\Users\Eric\c88c\lectures\lecturel3\lecture
13.py", line 144, in map_deep buggy
E::::::::::> first val = map_deep buggy(fn, seq[0])
TypeError: 'int' object is not subscriptable

This domain violation should Tip: learn how to read and interpret Python error messages.

ring alarm bells in your head .
thgat this implemeﬁtaﬂon is Useful not only in C88C, but also your future classes + career.

wrong.
Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(Aside) Python types

- Python doesn't have a strict static system like “statically typed” languages like
Java, C/C++. Instead, it's a dynamically typed language.

- Conseqguence: in Python, we can accidentally pass the wrong types into
functions. This isn't possible in statically-typed languages like Java/C/C++

def map_shallow(fn, lst):
Domain: (argl) function of one arg
(arg2) list
Range: list
if not lst:
return []
return [fn(lst[©])] + map_shallow(fn, 1lst[1l:])

>>> map_shallow(lambda x: x * 2, 42)
line 144, in map_deep_ buggy

first val = map_deep buggy(fn, seq[@])
TypeError: 'int' object is not subscriptable

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

(Aside) Python type annotation hints

- In your future Python work, you may enjoy annotating functions with their
domain/range via python3.5+'s built-in type-annotation hints (typing package)

from typing import List, Callable “List[int] means “a list of integers.
"List” implies “a list with elements of

def map_shallow typehint(fn: Callable, 1st: List[int]) -> List: unknown type”

Domain: (argl) function of one arg

(arg2) list Callable: if you know the exact

Range: list input/output types ahead of time, you

if not 1lst: can do:

return [] "Callable[[input_type 1, ...], out_type]

return [fn(1lst[©])] + map_shallow_typehint(fn, 1st[1:])
Some IDE’s (eg VSCode, PyCharm) can
>>> map_shallow(lambda x: x * 2, 42) interpret these type-hints and warn you if

you are passing in the wrong types!
line 144, in map_deep buggy

first val = map_deep buggy(fn, seq[0])

TypeError: 'int' object is not subscriptable Note: this slide is NOT
Take care: type-hints don’t actually do anything, the required for this class.
above error will still happen. Aka a “fancy comment”

Eric Kim | UC Berkeley | https://c88c.org | © CC BY-NC-SA

https://docs.python.org/3/library/typing.html

Today’s Lecture. Any questions?

- Tree recursion
- aka recursive functions that make muiltiple recursive calls per “level”
- call stack looks like a “tree”

- Function domain/range

5

3 2

2 1 1 1
1 1 0

1 0

40

Computational Structures in Data Science

Quicksort

©@O®S©

- A fairly simple to sorting algorithm
- Goal: Sort the list by breaking it into partially sorted parts
- Pick a “pivot”, a starting item to split the list
- Remove the pivot from your list
- Split the list into 2 parts, a smaller part and a bigger part
- Then recursively sort the smaller and bigger parts
- Combine everything together: the smaller list, the pivot, then the bigger list

QuickSort Example

3,)3, 1, 4, 5, 4, 3, 2, 1, 17]

Smaller than Larger than
pivot |::> (3) 1, 3, 2, 1] (4 ,) 5, 4, 17] <:| pivot
(unsorted) (unsorted)

{1, 3, 2, 1] [] [4] {5, 17]
[1] {3, 2] [1][] (1| | (17)

1 (2] 0 [4] (1]
(11| 1113 [5, 17]
[2, 3] [4, 4, 5, 17]

[l’ l’ 2’ 3] Original (top

level) pivot

[l) l) 29 3) 3]

-
[1, 1, 2, 3, 3,(3,)4, 4, 5, 17]

Smaller than pivot (sorted) Larger than pivot (sorted)

Tree Recursion

- Break the problem into multiple smaller sub-problems, and Solve them
recursively

def split(x, s):
return [1 for i in s if 1 <= x], [1 for 1 in s if 1 > x]

def quicksort(s):
"""Sort a sequence - split it by the first element,
sort both parts and put them back together."""
if not s:
return []
else:
pivot = s[0]
smaller, bigger = split(pivot, s[1:])
return quicksort(smaller) + [pivot] + quicksort(bigger)

>>> quicksort([3,3,1,4,5,4,3,2,1,17])
(1, 1, 2, 3, 3, 3, 4, 4, 5, 17]

44

Quicksort Visualization

- https://recursion.vercel.app/

[1,1,2,3,3,3,4,4,5,17]

qulcksort([3, 3,1,4,5,4,3,2,1,17))
(/711233 [4,4,5,17]
quicksort([3, 1,3, 2, 1])) quicksort([4, 5, 4, 17])]
K[l 1,2,3] (] [4]
= .

quicksort([1, 3, 2, jj;ﬁph quicksort([])
[1] K\ [2,3]

[quicksort([3,2])] (qUiCkSOI‘t([]))

quicksort([1])

quicksort([]) quicksort([])

—
—

quicksort([2]) quicksort([]) quicksort([]) quicksort([])

quicksort([]) quicksort([])

https://recursion.vercel.app/

	Slide 1: Tree Recursion
	Slide 2: Announcements
	Slide 3: Announcements: Midterm scheduling!
	Slide 4: Midterm content
	Slide 5: Midterm logistics
	Slide 6: Today’s Lecture
	Slide 7: Learning Objectives
	Slide 8: Tree Recursion
	Slide 9: Example I
	Slide 10: The Fibonacci Sequence
	Slide 11: The Fibonacci Sequence
	Slide 12: Golden Spirals Occur in Nature
	Slide 13: Fibonacci Code
	Slide 14: Visualizing Fib Recursion:
	Slide 15: But what about the iterative version?
	Slide 16: What's Similar to Fibonacci?
	Slide 17: Count Change
	Slide 18: Counting Change
	Slide 19: Counting Change
	Slide 20: count_change code
	Slide 21: Visualizing Count Change
	Slide 22: Why use problems like count change?
	Slide 23: There are many more recursive problems!
	Slide 24: Exercise: map
	Slide 25: Exercise: map
	Slide 26: Exercise: map
	Slide 27: Exercise: “deep” map
	Slide 28: Exercise: “deep” map
	Slide 29: Tip: isinstance()
	Slide 30: Exercise: “deep” map
	Slide 31: Visualization: map_deep
	Slide 32: Visualization: map_deep vs shallow map
	Slide 33: Tip: function “domain”, “range”
	Slide 34: Tip: function “domain”, “range”
	Slide 35: Tip: function “domain”, “range”
	Slide 36: Tip: function “domain”, “range”
	Slide 37: Tip: function “domain”, “range”
	Slide 38: (Aside) Python types
	Slide 39: (Aside) Python type annotation hints
	Slide 40: Today’s Lecture. Any questions?
	Slide 41: Quicksort
	Slide 42: Quicksort
	Slide 43: QuickSort Example
	Slide 44: Tree Recursion
	Slide 45: Quicksort Visualization

