

• Midterm this week!

• Project01 (“Maps”) due 7/18 (Thurs!)

• Project02 ("Ants") released on 7/17 (Wed)

• Midterm this week!

• Important: please carefully read this Ed post: Midterm Megathread. It is your
responsibility to read and understand the entirety of this post, particularly
the Midterm Logistics and Online Midterm Logistics posts.

• Failure to do so can, at worst, lead to issues like academic integrity violations
or missed exams, and can lead to your midterm score being cancelled!

• "Primary" Midterm exam time: Wednesday July 17th 2024, 3 PM – 5 PM PST

• (Alternate Exam Times, DSP): on Friday (7/12) we sent an e-mail to all students
that needed an alternate exam time, and assigned them their midterm time
slot.

• If you didn't receive an e-mail, please let us know ASAP by asking in Ed or e-mailing
us at cs88@berkeley.edu

https://edstem.org/us/courses/59252/discussion/5090138
https://edstem.org/us/courses/59252/discussion/threads/152
https://edstem.org/us/courses/59252/discussion/5090135
mailto:cs88@berkeley.edu

• Classes can inherit methods and attributes from parent classes but
extend into their own class.

• “is a” relationship

class BaseAccount:
def __init__(self, name, initial_deposit):

Initialize the instance attributes
self._name = name
self._acct_no = Account._account_number_seed
Account._account_number_seed += 1
self._balance = initial_deposit

class CheckingAccount(BaseAccount):
def __init__(self, name, initial_deposit):

Use superclass initializer
BaseAccount.__init__(self, name, initial_deposit)
Alternatively (recommended):
super().__init__(name, initial_deposit)
Additional initialization
self._type = "Checking"

CheckingAccount

inherits from the

BaseAccount class

BaseAccount is the

“parent class” of the

CheckingAccount class.

(jargon)

CheckingAccount

“extends” BaseAccount

• super() gives us access to methods in the parent or "superclass"

• Can be called anywhere in our class

• Handles passing self to the method

• Handles looking up an attribute on a parent class, too.

• We can directly call ParentClass.method(self, …)

• This is not quite as flexible if our class structure changes.

• In general, prefer using super()!

• Outside of C88C, things can get complex…

• https://docs.python.org/3/library/functions.html#super

https://docs.python.org/3/library/functions.html#super

• In general, super() is "smart"

• It tries to find the most correct parent class

• Super will search through classes with multiple parent classes, or a long
hierarchy of classes

• Hardcoding class name (eg `ParentClass`) is less flexible, but very specific.

• Use it if you know you always want the same class to be used.

Use inheritance to refine the behavior of a parent.

For example, our BaseAccount allows us to overdraft our account.

We might want to protect against this:

class CheckingAccount(BaseAccount):

(…omitted…)

def withdraw(self, amount):

if self.account_balance() - amount < 0:

return "ERROR: You are not allowed to overdraft a
CheckingAccount."

return super().withdraw(amount)

- Warning: when referencing class variables, be careful about hardcoding class
names when combining with inheritance:

class BaseClass:
my_global_var = 42
def some_method(self):

return BaseClass.my_global_var

class ChildClass(BaseClass):
my_global_var = 9000 # override

>>> base_class = BaseClass()
>>> child_class = ChildClass()
>>> base_class.some_method()
FILL ME IN
42
>>> child_class.some_method()
FILL ME IN
42

Surprise! ChildClass is still using

BaseClass.my_global_var.

How to get ChildClass’s class var override to “do the right thing”?

class BaseClass:
my_global_var = 42

def some_method(self):
return BaseClass.my_global_var

def some_method_v2(self):
"works", but be careful, this can
confuse global vars vs instance vars
return self.my_global_var

def some_method_v3(self):
IMO a better version, dynamically
get class rather than hardcoding
return type(self).my_global_var

class ChildClass(BaseClass):
my_global_var = 9000 # override

>>> child_class = ChildClass()
>>> child_class.some_method_v2()
9000
>>> child_class.some_method_v3()
9000

Tricky: create an INSTANCE VAR
>>> child_class.my_global_var = 'hi'
>>> child_class.some_method_v2()
'hi'
>>> child_class.some_method_v3()
9000

Main takeaways:

(1) Hardcoding class names when accessing class

vars can lead to issues for inheritance

(2) Instance vars can "shadow" global vars if you're not

careful

• Midterm:

• 2 hours, 120 Minutes

• 5 Handwritten Cheat sheets – More than ~3 is counter-productive

• 1 CS88 Provided Reference Sheet

https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view

You are not your grades!

Do your best!

"Perseverance is the hard work you do after you get tired of doing the hard work you
already did." —Newt Gingrich (Former Speaker of the United States House of Representatives)

"Continuous effort—not strength or intelligence—is the key to unlocking our potential."
—Winston Churchill (Former Prime Minister of the United Kingdom)

"Motivation will almost always beat mere talent." —Norman Ralph Augustine (Former United

States Under Secretary of the Army)

"[being bad] at something is the first step towards being sorta good at something." –
Jake the Dog (Adventure Time)

"Be like Obi-Wan!" – Eric Kim
Image from: https://www.reddit.com/r/StarWars/comments/v67h5b/the_evolution_of_obiwan_with_disney_version/Jake The Dog image from: https://www.imdb.com/title/tt1886803/

• Don't rush!

• Slow is fast and fast is slow

• BREATHE!

• Skim the exam first

• It's ok to do questions out of order!

• Get the stuff you're good without out of the way

• BUT don't spend too much time planning the exam.

• Read through the question once

• What's it asking you to do at a high level?

• What do the doctests suggest?

• What techniques should you be using?

• Use the scratch space! (writing/drawing on blank paper is very helpful)

(especially for Environment

Diagrams)

• Everything Through OOP w/ Inheritance

• Functions

• Higher Order Functions

• Functions as arguments

• Functions as return values

• Environment Diagrams

• Lists, Dictionaries

• List Comprehensions, Dictionary Comprehensions

• Abstract Data Types

• Recursion

• Object-Oriented Programming, Inheritance

• Environment Diagrams, "What Would Python Print" (WWPP)

• My advice: draw it out on your blank scratch paper with paper/pen!

• Especially helpful for list/dict mutation "WWPP" questions

• You won't have Python Tutor for the exams, but you should be able to
reproduce Python Tutor's visualizations "from scratch".

• Recall: multiple variables can point to the same compound object (eg list, dict,
object)

• Recursion

• "Put on your recursion hats" and think about (1) Base cases, (2) Recursive
cases.

• Given a problem X, how to solve it by solving a smaller problem(s)?

• (base case) What is the "smallest" problem I can solve directly/trivially?

• "Fill in the blank" coding

• If you do the practice midterms, many coding questions are of the "fill in the
blank" variety.

• This requires a slightly different skillset than writing your own code "from
scratch". Instead, you must become good at the following steps:

• (1) Read existing (incomplete) code

• (2) Determine what the code is trying to do, and

• (3) Fill in the blanks to achieve the desired implementation.

• Tip: Resist the inner thought "I wouldn't have done it this way", and instead
follow how the exam code is doing things.

Note: course teaching staff

(TAs/Tutors/Instructors) become very

good at this after grading student code

hundreds of times :P

• "Fill in the blank" coding

• If you do the practice midterms, many coding questions are of the "fill in the
blank" variety.

• This requires a slightly different skillset than writing your own code "from
scratch". Instead, you must become good at the following steps:

• (1) Read existing (incomplete) code

• (2) Determine what the code is trying to do, and

• (3) Fill in the blanks to achieve the desired implementation.

• Tip: Resist the inner thought "I wouldn't have done it this way", and instead
follow how the exam code is doing things.

Note: course teaching staff

(TAs/Tutors/Instructors) become very

good at this after grading student code

hundreds of times :P

• "Fill in the blank" coding

• If you do the practice midterms, many coding questions are of the "fill in the
blank" variety.

• This requires a slightly different skillset than writing your own code "from
scratch". Instead, you must become good at the following steps:

• (1) Read existing (incomplete) code

• (2) Determine what the code is trying to do, and

• (3) Fill in the blanks to achieve the desired implementation.

• Tip: Resist the inner thought "I wouldn't have done it this way", and instead
follow how the exam code is doing things.

Note: course teaching staff

(TAs/Tutors/Instructors) become very

good at this after grading student code

hundreds of times :P

• Tip: when working with ADT's in this class:

Is this

code/function part

of the ADT?

NO

Function CAN assume internal

implementation details.

Can also use ADT constructors and

selectors.

YES

Function CAN'T assume internal

implementation details. Must use

ADT's constructors/selectors

("public API/inferface")

Tip: synonyms for this are:

"fn() is part of the ADT".

Constructors, selectors are

part of the ADT.

Tip: synonyms for this

are: "fn() is a user of

the ADT", "fn() is an

operation", "given an

ADT, implement fn()"

Solution here (Sp22

Midterm Q7)

FILL ME IN
def wear_clothes(closet, clothes_worn):

clothes = get_clothes(closet)
for c in clothes_worn:

if c not in clothes:
clothes[c] = 0

clothes[c] += 1

Question: why can we assume that

`clothes` is a dict, and do things like

`clothes[c] = 0`? Isn't this an

abstraction violation?

Answer: the only ADT in this problem is the Closet

ADT. There is no "clothes" ADT, thus it's safe for us to

treat "clothes" as a dict.

BUT: if there was a "clothes" ADT, then we'd have to

use those to avoid abstraction violations.

Interesting Exercise: create a

"Clothing" ADT, then rewrite both

the Closet ADT and

`wear_clothes()` to use the Clothing

ADT.

https://drive.google.com/file/d/1t0HEmN64Ro3QonNbu4OXbfAKrZDCQhPR/view

Solution here (Sp22

Midterm Q7)

FILL ME IN
def favorite_clothing_item(closet):

return max(
get_clothes(closet),
key = lambda item: get_clothes(closet)[item]

)

Returns the number of times clothing

`item` has been worn (integer)

Tip: max(a_dict) does max(a_dict.keys()). Thus, the above could

also be expressed as this to make this more clear:

return max(get_clothes(closet).keys(), key=<same lambda>)

https://drive.google.com/file/d/1t0HEmN64Ro3QonNbu4OXbfAKrZDCQhPR/view

Spring 2024 Midterm Q2

(solution)

Demo: how I approach

env diagram questions

like this

https://drive.google.com/file/d/1THCgbfXfP4hEUVes2KL5E4NJurzyvVpR/view

"Fill in the blank" coding! My first instinct:

Read doctests FIRST, understand the

inputs/outputs and desired behavior. If I

don't understand what the function is

supposed to do, I can't code it up!

Next, I look at the provided code, and try

to understand what the code is doing at a

high-level/structural level.

We're returning `company_total`, so I

know that this must be a dict mapping `str

stock_name` to `int total_value`

We're iterating over every

stock_dict in portfolio, thus in each

iteration I need to add something

in `stock_dict` into

`company_total` (our return value)

This is a pattern we've seen before, where if a key doesn't already exist in

a dict, we first add it to the dict (`a_dict[key] = val`), but if it already exists

we can directly add to it (`a_dict[key] += val`)

Thus, I bet blank (b) is `if stock_name in company_total`, and (c) is

buy_price * quantity.

https://drive.google.com/file/d/1N2kCrTJDxSzIUzBLyfgW8eccT9Q1OYYL/view

def analyze_portfolio(portfolio, prices):
company_total = {}
for stock_dict in portfolio:

stock_name = stock_dict["stock"]
current_price = ____(a)____
if stock_name in company_total:

company_total[stock_name] +=
stock_dict["quantity"] * current_price

else:
company_total[stock_name] =

stock_dict["quantity"] * current_price
return company_total

Finally, to fill in blank (a), I re-read the

docstring + problem spec to see how to

get the current price of a stock, and find

that I can get this info from `prices` ->

blank (a) is: `prices[stock_name]`

https://drive.google.com/file/d/1N2kCrTJDxSzIUzBLyfgW8eccT9Q1OYYL/view

	Slide 1: OOP Part 3 Midterm Review
	Slide 2: Announcements
	Slide 3: Announcements: Midterm
	Slide 4: Object-Oriented Programming: Inheritance Review
	Slide 5: Class Inheritance
	Slide 6: Example
	Slide 7: Accessing the Parent Class
	Slide 8: super() and Multiple Parent Classes
	Slide 9: When Should You Use Inheritance?
	Slide 10: Inheritance & Class Attributes - Warning
	Slide 11: Inheritance & Class Attributes - Warning
	Slide 12: Midterm Review
	Slide 13: Announcements & Policies
	Slide 14
	Slide 15
	Slide 16: My Advice
	Slide 17: Midterm Topics
	Slide 18: Some specific advice
	Slide 19: Some specific advice
	Slide 20: Some specific advice
	Slide 21: Some specific advice
	Slide 22: Some specific advice
	Slide 23: ADTs
	Slide 24: Some Practice Questions
	Slide 25: SP22 Q7
	Slide 26: SP22 Q7
	Slide 27: SP24 Q2
	Slide 28: SP24 Q7 (sol)
	Slide 29: SP24 Q7 (sol)

