

• Only two more lectures of (testable) content!

• Databases & SQL (today), SQL (tomorrow)

• "Official" course evaluation survey released

• https://course-evaluations.berkeley.edu/Berkeley/

• Filling this out will be a huge help for the Data/DSUS department with
regard to course development, so please fill this out :)

•"Unofficial" Mid-semester survey due tonight (7/29, 11:59 PM PST)

• Filling this out helps us improve the course, and helps course staff
improve. And, +2 pts Extra Credit!

https://course-evaluations.berkeley.edu/Berkeley/

• Wednesday lecture (7/31) will have an "AMA" (Ask Me Anything) portion

• (optional) Post your questions in the Ed post: "AMA" Lecture Questions
Thread

https://edstem.org/us/courses/59252/discussion/5129596
https://edstem.org/us/courses/59252/discussion/5129596

•Final exam "primary" time: Wednesday August 7th, 3PM – 5 PM PST

•Final exam scheduling form released

• Gradescope: "(Urgent) Final Exam Scheduling"

• Due: Wednesday July 31st 11:59 PM PST

• Please fill this out ASAP! For more info, see Ed post.

• DSP students: you should have received an email for a separate Final exam scheduling form.

Please fill this out – if you didn't receive an e-mail, let us know!

• Final exam will have the same style as the Midterm

• Zoom+Gradescope

https://www.gradescope.com/courses/786589/assignments/4672760/
https://edstem.org/us/courses/59252/discussion/5126841

• Midterm grades released on Gradescope

• Regrade requests via Gradescope (Due date: Fri 8/2 11:59 PM PST)

• Note: regrade requests must be specific and well-justified.
Spamming erroneous regrade requests may result in negative
repercussions. (Gradescope guide: How to submit regrade requests)

https://help.gradescope.com/article/8hchz9h8wh-student-regrade-request

•SQL is a declarative programming language for accessing and
modifying data in a relational database.

•It is an entirely new way of thinking (“new” in 1970, and new to you
now!) that specifies what should happen, but not how it should
happen.

•One of a few major programming paradigms

• Imperative/Procedural

• Object Oriented

• Functional

• Declarative

• A declarative language

• Described what to compute

• Imperative languages, like python, describe how to compute it

• Query processor (interpreter) chooses which of many equivalent
query plans to execute to perform the SQL statements

• ANSI and ISO standard, but many variants

• We will learn just the basics.

• CS88's SQL will work on nearly all relational databases—databases
that use tables.

• SELECT statement creates a new table, either from scratch or by
projecting a table

• CREATE TABLE statement gives a global name to a table

• Lots of other statements

–analyze, delete, explain, insert, replace,

update, …

• SQL queries, aggregates, updates data in a database.

• SQL is case-insensitive

• But the data can be case-sensitive. (We'll talk about this later...)

SELECT date, COUNT(*)

FROM users

WHERE date > "2024-06-01"

GROUP BY date;

date count

2024-06-02 136

2024-06-03 257

2024-06-04 326

2024-06-05 167

… …

This query means: From the `users` table,

fetch all rows whose `date` column is >

`current_date`, group them by `date`, and count

how large each group is.

There are 257 rows

with date=2024-06-03

user_name date

"bob" 2024-06-01

"alice" 2024-06-01

"louis" 2024-06-02

"alyssa" 2024-06-03

… …

Query results`users` table

Note: query results are

also a table!

• Data lives in files: website access logs, in images, in CSVs and so
on…

• Useful, but hard to access, aggregate and compute results.

• Databases provide a mechanism to store vast amounts of data in
an organized manner.

• They (often) rely on ”tables” as an abstraction.

• There are other kinds of databases, that store “documents” or
other forms of data.

• Databases is the topic of CS186

• Elsewhere: Data, its storage and accessing it are critical to data
science.

Interface between Users and underlying data.

Provides an abstraction layer so that Users

can focus on solving problems (eg data

science) instead of data details (eg how the

underlying data is stored, etc)

Ex: MySQL, sqlite3

Data implementation

details. Data file format

(binary, text, CSV,

parquet). Data location

(cloud vs on-site).

Techniques to arrange

data to optimize for

access.

Applications.

Ex: a data scientist wants

to perform exploratory

data analysis on a health

dataset.

Ex: a DS wants to see if a

website change improved

user engagement metrics.

https://parquet.apache.org/

•The SQL language is represented in query strings delivered to a DB
backend.

•Use the techniques learned here to build clean abstractions.

•You have already learned the relational operators!

Python Interpreter

Application

Database

Query

Processor,

i.e.,

Interpreter

Classes

&

Objects

User

SQL query

Response
Tables

datascience

•A single, simple, powerful data structure for all

• Inspired by Excel, SQL, R, Pandas, etc.

ordered collection of labeled columns of anything

label

v
a
lu

e
s

Numpy array
T[‘label’]

dict,

record,tuple

select, where, take, drop,

group

join

pivot,

pivot_bin

split

•DBMS are persistent tables with powerful relational operators

•Important, heavily used, interesting!

•A table is a collection of records, which are rows that have a value for each
column

•Structure Query Language (SQL) is a declarative programming language
describing operations on tables

Name Latitude Longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

table has

columns

and rows

row has a

value for

each column

column has

a name and

a type

• CSV files: A database with one table

• Excel / Google Sheets:

• Each "tab" is a table, with rows and columns

• A datascience Table is not a database, but is similar

• Websites are backed by databases

• bCourses, Gradescope, etc have a table of users, assignments, etc

• These tables have standardized rows and columns

• Structured data: in practice, means
"tabular" data

• Ex: tables, spreadsheets. Each row
follows a set schema

• Unstructured data: everything else

• raw text logs

• images/videos

• In practice: people will ingest
unstructured data (eg User
engagement logs) and process them
into a structured format

Name Latitude Longitude

Berkeley 38 122

Cambridge 42 71

Minneapolis 45 93

[2024-06-01 00:23:01] User 'louis' logged in
[2024-06-01 00:23:02] User 'alice' logged in
[2024-06-01 00:23:32] User 'alice' defeated 'louis'
[2024-06-01 00:23:32] User 'alice' leveled up!
[2024-06-01 00:23:38] User 'louis' messaged 'lol'
[2024-06-01 00:23:40] User 'louis' logged out
...

In this class (C88C) we'll focus on

structured (tabular) data, which

SQL excels at

•Pronounced "sequel lite"

•It's lightweight, fast, and works on most computers natively

•It’s incredibly popular! Used by iOS, Android, Apple apps, and even
airplanes!

• But sqlite is not setup for all applications, like such as websites like
Gmail/bCourses, etc.

• A database is a .db file, which contains all of your data in an
efficient form (eg compressed, postprocessed, etc).

• Many people connect to sqlite through a program like Python OR
through the sqlite interpreter.

https://www.sqlite.org/index.html
https://www.sqlite.org/famous.html

•sqlite3 is a Python module which connects to a SQLite database

•This is the first time you write code that really interacts with data
on your computer!

• We can modify and delete data!

• There's some "boilerplate" setup here, but it's not too bad…

• Note: in this class (C88C) we will NOT be using Python+sqlite3 for
SQL, instead we'll primarily be using the SQL interactive console.
So, the next few slides are for "fun"

• More of a glimpse into how language wrappers on top of SQL exists

https://docs.python.org/3/library/sqlite3.html

• Interactive console used via the Terminal!

• Everything is saved automatically. BEWARE!
sqlite3 24-Databases_and_SQL.db

SQLite version 3.37.0 2021-12-09 01:34:53

Enter ".help" for usage hints.

sqlite> .help

.echo on|off Turn command echo on or off

.exit ?CODE? Exit this program with return-code CODE

.headers on|off Turn display of headers on or off

.help ?-all? ?PATTERN? Show help text for PATTERN

.quit Exit this program

.show Show the current values for various settings

.tables ?TABLE? List names of tables matching LIKE pattern TABLE

.trace ?OPTIONS? Output each SQL statement as it is run

sqlite> .tables

cones sales

There are many

more commands

than the ones

shown here!, but

these can be neat!

(Not required for this

class) To install sqlite3,

visit

https://www.sqlite.org/do

wnload.html

https://www.sqlite.org/download.html
https://www.sqlite.org/download.html

• C88C has a special sqlite_shell.py script just for the class! Similar in spirit to the
`sqlite3` executable. This is what we'll use for labs/homeworks!

• Everything is saved automatically. BEWARE!
python3 sqlite_shell.py 24-Databases_and_SQL.db

SQLite version 3.40.1 (adapter version 2.6.0)
Enter ".help" for usage hints.
sqlite> .help
.cd DIRECTORY Change the working directory to DIRECTORY
.dump Dump the database in an SQL text format
.exit Exit this program
.help Show this message
.open FILE Close existing database and reopen FILE
.print STRING... Print literal STRING
.quit Exit this program
.read FILENAME Execute SQL in FILENAME
.schema ?PATTERN? Show the CREATE statements matching PATTERN
.show Show the current values for various settings
.tables ?TABLE? List names of tables
sqlite> .tables
sales
cones

This .db file is a persistent file that

lives on your computer that contains

your tables/data in a special format

that sqlite_shell.py knows how to work

with.

Notably: making changes to tables

within your sqlite_shell.py session will

modify your .db file, meaning

changes persist between

sqlite_shell.py sessions! Neat!

Aka "mutation" on a file-system level.

• Statements operate on tables inside a database.

• SELECT statement creates a new table, either from scratch or by
projecting a table

• CREATE TABLE statement gives a global name to a table

• Lots of other statements

–analyze, delete, explain, insert, replace,

update, …

• SQL queries, aggregates, updates data in a database.

• SQL is case-insensitive

• SQL statements create tables

• Give it a try with sqlite3 or code.cs61a.org

• Each statement ends with ‘;’

cs88 $ sqlite3

SQLite version 3.9.2 2015-11-02 18:31:45

Enter ".help" for usage hints.

Connected to a transient in-memory database.

Use ".open FILENAME" to reopen on a persistent database.

sqlite> select 38 as latitude, 122 as longitude, "Berkeley" as

name;

38|122|Berkeley

sqlite>

Tip: "transient in-memory

database" means "we're not using

a persistent db file", aka "data

changes will NOT persist after

exiting this sqlite3 session

https://code.cs61a.org/

• SQL Keywords are case-insensitive

• e.g. SELECT and select do the same thing

• I try to capitalize them to make it clear what's-what.

• The order of SQL keywords matters

• e.g. SELECT ... FROM … WHERE …

• Every statement ends in a ;

• Whitespace doesn't matter

• But indentations and newlines help make queries readable!

• Despite being a standard, differences do exist between databases.
We use sqlite3.

•Comma-separated list of column descriptions

•Column description is an expression, optionally followed by as and a
column name

•Selecting literals creates a one-row table

•union of select statements is a table containing the union of the
rows select "strawberry" as Flavor, "pink" as Color, 3.55 as Price union

select "chocolate","light brown", 4.75 union

select "chocolate","dark brown", 5.25 union

select "strawberry","pink",5.25 union

select "bubblegum","pink",4.75;

SELECT [expression] AS [name], [expression] AS [name]; . . .

select "strawberry" as Flavor, "pink" as Color, 3.55 as Price;

•Input table specified by from clause

•Subset of rows selected using a where clause

•Ordering of the selected rows declared using an order by clause
select [columns] from [table] where [condition] order by [order] ;

SELECT * FROM cones ORDER BY Price;

• What if we want to SELECT all columns and all rows in a table?

• What does * do?

• The asterisk (or star) is a stand-in to mean "any value"

• SELECT * … means "Select all columns"

• Outside of SQL, * is a very common operator:

• Regular Expressions (in DATA 100 / CS 61B) * means match "any
character"

• In Unix/Linux (macOS) * is a wildcard in the command line.

• In practice, every row or record in a table should have a
unique unambiguous ID

• Why?

• How do we know if a record is the same as some other value?

• A properly setup table will handle this for you. ☺

• We'll see it's use in next lecture.

•A “projection” is a view of a table, it doesn’t alter the state of the
table.

•Set of Table records (rows) that satisfy a condition

select [columns] from [table] where [condition] order by [order] ;

•use the WHERE clause in the SQL statements such
as SELECT, UPDATE and DELETE to filter rows that do not meet a
specified condition

http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-update/
http://www.zentut.com/sql-tutorial/sql-delete/

•SQL a declarative programming language on relational tables

•largely familiar to you from data8

•create, select, where, order, group by, join

•Databases are accessed through Applications

•e.g., all modern web apps have Database backend

•Queries are issued through API

•Be careful about app corrupting the database

•Data analytics tend to draw database into memory and operate on it
as a data structure

•e.g., Tables

CREATE TABLE

•SQL often used interactively

•Result of select displayed to the user, but not stored

•Create table statement gives the result a name

•Like a variable, but for a permanent object

create table [name] as [select statement];

create table cones as
select 1 as ID, "strawberry" as Flavor, "pink" as Color,

3.55 as Price union
select 2, "chocolate","light brown", 4.75 union
select 3, "chocolate","dark brown", 5.25 union
select 4, "strawberry","pink",5.25 union
select 5, "bubblegum","pink",4.75 union
select 6, "chocolate", "dark brown", 5.25;

Notice how column names are introduced and implicit later on.

SELECT <col spec> FROM <table spec> WHERE <cond spec>
GROUP BY <group spec> ORDER BY <order spec> ;

INSERT INTO table(column1, column2,...)
VALUES (value1, value2,...);

CREATE TABLE name AS <select statement> ;

CREATE TABLE name (<columns>) ;

DROP TABLE name ;

	Slide 1: Databases & SQL
	Slide 2: Announcements
	Slide 3: Announcements: AMA Questions Thread
	Slide 4: Announcements: Final Exam
	Slide 5: Announcements: Midterm
	Slide 6: Why SQL? (Review)
	Slide 7: What is SQL?
	Slide 8: SQL Statements
	Slide 9: What does SQL Look Like?
	Slide 10: Why Databases?
	Slide 11: Database Management Systems
	Slide 12: Applications Issue Queries to a Database
	Slide 13: Data 8 Tables, datascience
	Slide 14: Database Management Systems
	Slide 15: You've seen (and used) databases
	Slide 16: Data: structured vs unstructured
	Slide 17: Interacting With A Database
	Slide 18: sqlite3 [SQLite Docs]
	Slide 19: sqlite3 [Python Docs]
	Slide 20: Connecting To a Database (Python 3)
	Slide 21: SQLite Python API – In a Notebook.
	Slide 22: The sqlite console
	Slide 23: C88C sqlite_shell.py interactive console
	Slide 24: Introduction to SQL
	Slide 25: SQL Statements
	Slide 26: SQL example
	Slide 27: SQL Basics
	Slide 28: A Running example from Data 8
	Slide 29: SELECT
	Slide 30: Select …
	Slide 31: Projecting existing tables
	Slide 32: Wildcards
	Slide 33: What's different about this table? IDs!
	Slide 34: Projection
	Slide 35: Filtering in SQL
	Slide 36: Filtering rows - where
	Slide 37: SQL Operators for predicate
	Slide 38: Summary
	Slide 39: CREATE TABLE
	Slide 40: SQL: creating a named table
	Slide 41: Summary – Part 1 (and SQL demo)

