

•"Official" course evaluation survey released

• https://course-evaluations.berkeley.edu/Berkeley/

• Filling this out will be a huge help for the Data/DSUS department with
regard to course development, so please fill this out :)

• Project02 ("Ants") due this Thursday (8/1)!

https://course-evaluations.berkeley.edu/Berkeley/

•Final exam "primary" time: Wednesday August 7th, 3PM – 5 PM PST

•Final exam scheduling form released

• Gradescope: "(Urgent) Final Exam Scheduling"

• Due: Wednesday July 31st 11:59 PM PST

• Please fill this out ASAP! For more info, see Ed post.

• DSP students: you should have received an email for a separate Final exam scheduling form.

Please fill this out – if you didn't receive an e-mail, let us know!

• Final exam will have the same style as the Midterm

• Zoom+Gradescope

https://www.gradescope.com/courses/786589/assignments/4672760/
https://edstem.org/us/courses/59252/discussion/5126841

•Set of Table records (rows) that satisfy a condition

select [columns] from [table] where [condition] order by [order] ;

•use the WHERE clause in the SQL statements such
as SELECT, UPDATE and DELETE to filter rows that do not meet a
specified condition

http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-update/
http://www.zentut.com/sql-tutorial/sql-delete/

LIKE

• LIKE compares text to a pattern

• Case-Insensitive by default. Means 'a' and 'A' are the same.

• Allows "wildcards" that match any character.

• % means "zero or more" characters at this "spot" in the pattern

• Examples:

'abc' LIKE 'abc' → true

'abc' LIKE 'a%' → true

'abc' LIKE '%b%' → true –shortcut for "does abc contain b?"

'b' LIKE '%b%' → true

'abc' LIKE 'c' → false

https://www.postgresql.org/docs/current/functions-matching.html#FUNCTIONS-LIKE

•SQL a declarative programming language on relational tables

•largely familiar to you from data8

•create, select, where, order, group by, join

•Databases are accessed through Applications

•e.g., all modern web apps have Database backend

•Queries are issued through API

•Be careful about app corrupting the database

•Data analytics tend to draw database into memory and operate on it
as a data structure

•e.g., Tables

SELECT <col spec> FROM <table spec> WHERE <cond spec>
GROUP BY <group spec> ORDER BY <order spec> ;

INSERT INTO table(column1, column2,...)
VALUES (value1, value2,...);

CREATE TABLE name AS <select statement> ;

CREATE TABLE name (<columns>) ;

DROP TABLE name ;

SELECT date, COUNT(*)

FROM users

WHERE date > "2024-06-01"

GROUP BY date;

date count

2024-06-02 136

2024-06-03 257

2024-06-04 326

2024-06-05 167

… …

This query means: From the `users` table,

fetch all rows whose `date` column is >

`current_date`, group them by `date`, and count

how large each group is.

There are 257 rows

with date=2024-06-03

user_name date

"bob" 2024-06-01

"alice" 2024-06-01

"louis" 2024-06-02

"alyssa" 2024-06-03

… …

Query results`users` table

Note: query results are

also a table!

• The GROUP BY clause is used to group rows returned by SELECT
statement into a set of summary rows or groups based on values of
columns or expressions.

• Apply an aggregate function, such as SUM, AVG, MIN,
MAX or COUNT, to each group to output the summary information.

http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-select/
http://www.zentut.com/sql-tutorial/sql-aggregate-functions/
http://www.zentut.com/sql-tutorial/sql-sum/
http://www.zentut.com/sql-tutorial/sql-avg/
http://www.zentut.com/sql-tutorial/sql-min-max/
http://www.zentut.com/sql-tutorial/sql-min-max/
http://www.zentut.com/sql-tutorial/sql-count/

aggregator function (average) Group keys (can be more than one!)

Flavor, Price
strawberry, 3.55
strawberry, 5.25

Flavor, Price
chocolate, 4.75
chocolate, 5.25
chocolate, 5.25

Flavor, Price
bubblegum, 4.75GROUP by

Flavor

avg(Price)
Flavor, Price
strawberry, (3.55
+ 5.25) / 2

Flavor, Price
chocolate, (4.75 +
5.25 + 5.25) / 3

Flavor, Price
bubblegum,
(4.75) / 1

Flavor, avg(Price)
strawberry, 4.4
chocolate, 5.0833
bubblegum, 4.75

avg(Price) is the result of

computing the average Price

within each group

• Caution: when using "GROUP BY", all selected columns MUST be
one of:
• (1) included in "GROUP BY"
• Or
• (2) in an aggregation function

sqlite> select flavor, avg(price), color from cones
group by flavor;

flavor, avg(price), color
bubblegum|4.75|pink
chocolate|5.083333333333333|light brown
strawberry|4.4|pink

SQL arbitrarily chose one of the

"chocolate" group Color values: "light

brown" or "dark brown". Weird! For more info on sqlite3's "bare columns", read

this interesting (and colorful) thread:

https://sqlite.org/forum/forumpost/4c8a673560d7

999a

It's confusing to have a query where it's

not clear what the output will be.

Hence the recommendation to put

selected columns in either "GROUP BY"

clause OR in an aggregation function.

Note: in many other SQL

engines, it's an error to

have a "bare" column.

https://sqlite.org/forum/forumpost/4c8a673560d7999a
https://sqlite.org/forum/forumpost/4c8a673560d7999a

DISTINCT

select from where order by

•Two tables are joined by a comma to yield all combinations of a row
from each (aka "Cartesian Product")

•select * from sales, cones;

• Joins combine two tables

• A "cross product" or full join gives all combinations

• This is often not useful!

• So, we can do an inner join where we "combine" rows only on some
logical identifier, like an "id"

• Often this is called a "foreign key" or a reference to an object in
another table.

SELECT * FROM cones, sales WHERE cone_id = cones.id;

Id|Flavor|Color|Price|Cashier|id|cone_id
1|strawberry|pink|3.55|Baskin|3|1
1|strawberry|pink|3.55|Robin|6|1
2|chocolate|light brown|4.75|Baskin|1|2
2|chocolate|light brown|4.75|Baskin|4|2
2|chocolate|light brown|4.75|Robin|5|2
3|chocolate|dark brown|5.25|Robin|2|3

table_name.column_name

Cashier, id, cone_id
Baskin|1|2
Baskin|3|1
Baskin|4|2
Robin|2|3
Robin|5|2
Robin|6|1

id, Flavor, Color, Price
1|strawberry|pink|3.55
2|chocolate|light brown|4.75
3|chocolate|dark brown|5.25
4|strawberry|pink|5.25
5|bubblegum|pink|4.75
6|chocolate|dark brown|5.25
7|vanilla|white|5.0

`sales` table

`cones` table

Suppose that the `sales, cones` tables are set up such that sales.cone_id

corresponds to the cones.id.

Ex: sales row `Baskin,1,2` means that Cashier=Baskin sold a cone with cone_id=2,

aka `1,chocolate,light brown,4.75`

Then, to determine the Flavor, Color and Price of all sales made, we do this join:

Tip: sales.cone_id is called a "foreign key" that refers to cones.id!

• Which of our cashiers sold the highest value of ice cream?

• First we need to find which cones were sold by whom, then we
SUM() the results!

Question: Write a SQL

query that can tell us which

Cashier sold the highest

value of ice cream.

sqlite> SELECT Cashier, SUM(Price) as 'Total Sold' FROM sales,
cones WHERE sales.cone_id = cones.id GROUP BY Cashier;
Cashier|Total Sold
Baskin|13.3
Robin|13.8

An "Alias" for convenience

• Any place that a table is named within a select statement, a table
could be computed

• As a sub-query

CREATE TABLE

•SQL often used interactively

•Result of select displayed to the user, but not stored

•Can create a table in many ways

•Often may just supply a list of columns without data.

•Create table statement gives the result a name

•Like a variable, but for a permanent object

CREATE TABLE [name] AS [select statement];

https://www.sqlite.org/lang_createtable.html

CREATE TABLE cones AS
select 1 as ID, "strawberry" as Flavor, "pink" as Color,

3.55 as Price union
select 2, "chocolate", "light brown", 4.75 union
select 3, "chocolate", "dark brown", 5.25 union
select 4, "strawberry", "pink",5.25 union
select 5, "bubblegum", "pink",4.75 union
select 6, "chocolate", "dark brown", 5.25;

•A database table is typically a shared, durable repository shared by
multiple applications

INSERT INTO table(column1, column2,...)
VALUES (value1, value2,...);

•If you don’t specify a WHERE, you’ll update all rows!

UPDATE table SET column1 = value1, column2 =
value2 [WHERE condition];

SELECT <col spec> FROM <table spec> WHERE <cond spec>
GROUP BY <group spec> ORDER BY <order spec> ;

INSERT INTO table(column1, column2,...)
VALUES (value1, value2,...);

CREATE TABLE name AS <select statement> ;

CREATE TABLE name (<columns>) ;

https://code.cs61a.org/

	Slide 1: SQL
	Slide 2: Announcements
	Slide 3: Announcements: Final Exam
	Slide 4: Filtering in SQL
	Slide 5: Filtering rows - where
	Slide 6: SQL Operators for predicate
	Slide 7: Approximate Matching: LIKE [Docs]
	Slide 8: Summary
	Slide 9: Summary – Part 1
	Slide 10: SQL: Aggregations
	Slide 11: Aggregations are Powerful & Common!
	Slide 12: Grouping and Aggregations
	Slide 13: Grouping and Aggregations
	Slide 14: Group by: "Bare" columns
	Slide 15: Unique & DISTINCT values
	Slide 16: SQL: Joins
	Slide 17: Joining tables
	Slide 18: Joins
	Slide 19: Inner Join
	Slide 20: Putting It All Together:
	Slide 21: Queries within queries
	Slide 22: SQL: CREATE and INSERT and UPDATE
	Slide 23: CREATE TABLE
	Slide 24: SQL: creating a named table
	Slide 25: Inserting new records (rows)
	Slide 26: UPDATING new records (rows)
	Slide 27: Summary (and https://code.cs61a.org SQL demo!)

