
INHERITANCE AND MIDTERM REVIEW 8
DATA C88C

July 16, 2024

1 Inheritance

1.1 Introduction

Python classes can implement a useful abstraction technique known as inheritance. To
illustrate this concept, consider the following Dog and Cat classes.
class Dog():

def __init__(self, name, owner):
self.is_alive = True
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says woof!")

class Cat():
def __init__(self, name, owner, lives=9):

self.is_alive = True
self.name = name
self.owner = owner
self.lives = lives

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name + " says meow!")



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 2
Notice that because dogs and cats share a lot of similar qualities, there is a lot of repeated
code! To avoid redefining attributes and methods for similar classes, we can write a single
superclass from which the similar classes inherit. For example, we can write a class called
Pet and redefine Dog as a subclass of Pet:
class Pet():

def __init__(self, name, owner):
self.is_alive = True # It's alive!!!
self.name = name
self.owner = owner

def eat(self, thing):
print(self.name + " ate a " + str(thing) + "!")

def talk(self):
print(self.name)

class Dog(Pet):
def talk(self):

print(self.name + ' says woof!')

Inheritance represents a hierarchical relationship between two or more classes where one
class is a more specific version of the other, e.g. a dog is a pet. Because Dog inherits from
Pet, we didn’t have to redefine init or eat. However, since we want Dog to talk
in a way that is unique to dogs, we did override the talk method.

Data C88C Summer 2024



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 3
1.2 Questions

1. Assume these commands are entered in order. What would Python output?
class Foo:

def __init__(self, a):
self.a = a

def garply(self):
return self.baz(self.a)

class Bar(Foo):
a = 1
def baz(self, val):

return val

>>> f = Foo(4)
>>> b = Bar(3)
>>> f.a

>>> b.a

>>> f.garply()

>>> b.garply()

>>> b.a = 9
>>> b.garply()

>>> f.baz = lambda val: val * val
>>> f.garply()

Data C88C Summer 2024



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 4

2 Midterm Review

2.1 Environment Diagrams

1. Draw the environment diagram for the following code:
doug = "ni"
def cat(dog):

def rug(rat):
doug = lambda doug: rat(doug)
return doug

return rug(dog)("ck")

cat(lambda rat: doug + rat)

Data C88C Summer 2024



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 5
2.2 HOF

2. (Spring 2015) Implement the memory function, which takes a number x and a single-
argument function f. It returns a function with a peculiar behavior that you must
discover from the doctests. You may only use names and call expressions in your
solution. You may not write numbers or use features of Python not yet covered in the
course.
square = lambda x: x * x
double = lambda x: 2 * x
def memory(x, f):

"""Return a higher-order function that prints its
memories.
>>> f = memory(3, lambda x: x)
>>> f = f(square)
3
>>> f = f(double)
9
>>> f = f(print)
6
>>> f = f(square)
3
None
"""
def g(h):

print(________________________________________)

return _______________________________________

return g

Data C88C Summer 2024



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 6
2.3 Recursion

3. (Fall 2013) The C88C staff has developed a formula for determining what a fox might
say. Given three strings, a start, a middle, and an end, a fox will say the start string,
followed by the middle string repeated a number of times, followed by the end string.
These parts are all separated by single hyphens.

Complete the definition of fox says, which takes the three string parts of the fox’s
statement (start, middle, and end) and a positive integer num indicating how many
times to repeat middle. It returns a string. You cannot use any for or while loops.
Use recursion in repeat. Moreover, you cannot use string operations other than the +
operator to concatenate strings together.
def fox_says(start, middle, end, num):

"""
>>> fox_says('wa', 'pa', 'pow', 3)
'wa-pa-pa-pa-pow'
>>> fox_says('fraka', 'kaka', 'kow', 4)
'fraka-kaka-kaka-kaka-kaka-kow'
"""
def repeat(k):

return start + '-' + repeat(num) + '-' + end

Data C88C Summer 2024



DISCUSSION 8: INHERITANCE AND MIDTERM REVIEW Page 7
4. Write a function that takes in a list and returns the maximum product that can be

formed using nonconsecutive elements of the list. The input list will contain only
numbers greater than or equal to 1.

Hint: You can use the built-in max function. For example, max(5, 3) returns 5.
def max_product(lst):

"""Return the maximum product that can be formed using lst
without using any consecutive elements
>>> max_product([])
1
>>> max_product([10, 3, 1, 9, 2]) # 10 * 9
90
>>> max_product([5, 10, 5, 10, 5]) # 5 * 5 * 5
125
"""

Data C88C Summer 2024


