
MORE INHERITANCE AND LINKED LISTS 9
DATA C88C

July 18, 2024

1 Inheritance

1. Below is a skeleton for the Cat class, which inherits from the Pet class. To complete
the implementation, override the init and talk methods.

Hint: You can call the init method of Pet to set a cat’s name and owner.

class Pet():
def __init__(self, name, owner):

self.name = name
self.owner = owner

class Cat(Pet):
def __init__(self, name, owner, breed):

"""
>>> cat = Cat('Thomas', 'Tammy', 'Siamese')
>>> cat.name
'Thomas'
>>> cat.owner
'Tammy'
>>> cat.breed
'Siamese'
"""

Solution:
Pet.__init__(self, name, owner)

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 2

self.breed = breed

Alternate solution:
super().__init__(name, owner)
self.breed = breed

def talk(self):
"""Print out a cat's greeting.
>>> cat = Cat('Thomas', 'Tammy', 'Siamese')
>>> cat.talk()
Thomas the Siamese cat says meow!
"""

Solution:
print(f"{self.name} the {self.breed} cat says meow!

")

2. More cats! Fill in this implemention of a class called NoisyCat, which is just like a
normal Cat. However, NoisyCat talks a lot – twice as much as a regular Cat!
class _____________________: # Fill me in!

Solution:
class NoisyCat(Cat):

"""A Cat that repeats things twice."""
def __init__(self, name, owner, breed):

Is this method necessary? Why or why not?

Solution:
Cat.__init__(self, name, owner, breed)
Alternate solution:
super().__init__(name, owner, breed)

No, this method is not necessary because NoisyCat already inherits Cat’s init
method

def talk(self):
"""Talks twice as much as a regular cat.
>>> noisy_cat = NoisyCat('Magic', 'James', 'Siamese')
>>> noisy_cat.talk()
Magic the Siamese cat says meow!

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 3
Magic the Siamese cat says meow!
"""

Solution:
Cat.talk(self)
Cat.talk(self)

Alternate solution:
super().talk()
super().talk()

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 4

2 Linked Lists

2.1 Introduction

The following is the Link class used to represent linked lists.

class Link:
empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

def __getitem__(self, i):
if i == 0:

return self.first
return self.rest[i-1]

def __len__(self):
return 1 + len(self.rest)

We can write lnk.first and lnk.rest to access the first element of the linked list and
the rest of the linked list, respectively. In addition to the constructor init , we have
the special Python methods getitem and len . Note that any method that begins
and ends with two underscores is a special Python method. Special Python methods may
be invoked using built-in functions and special notation. The built-in Python element
selection operator, as in lst[i], invokes lst. getitem (i). Likewise, the built-in
Python function len, as in len(lst), invokes lst. len ().

However, we won’t use the above special methods in the rest of this worksheet, nor in
most of our linked list problems in this class. Instead, we will only use the Link construc-
tor and the self.first and self.rest instance attributes. This will be an exercise in
using the recursive structure of linked lists rather than treating them like regular Python
lists.

For the rest of this worksheet, assume that you are only given this portion of the Link
class implementation:

class Link:
empty = ()
def __init__(self, first, rest=empty):

assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 5
2.2 Questions

1. Write a function that takes in a a linked list and returns the sum of all its elements.
You may assume all elements in lnk are integers.
def sum_nums(lnk):

"""
>>> a = Link(1, Link(6, Link(7)))
>>> sum_nums(a)
14
"""

Solution:
if lnk == Link.empty:

return 0
return lnk.first + sum_nums(lnk.rest)

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 6
2. Write a iterative function is palindrome that takes a LinkedList, lnk, and returns
True if lnk is a palindrome and False otherwise. You can assume you have access
to a reverse function that takes a linked list as input and returns a reversed version
of the original linked list.
def is_palindrome(lnk):

"""
>>> one_link = Link(1)
>>> is_palindrome(one_link)
True
>>> lnk = Link(1, Link(2, Link(3, Link(2, Link(1)))))
>>> is_palindrome(lnk)
True
>>> is_palindrome(Link(1, Link(2, Link(3, Link(1)))))
False
"""

Solution:
reversed = reverse(lnk)
while lnk is not Link.empty and reversed.first == lnk.

first:
reversed = reversed.rest
lnk = lnk.rest

return lnk is Link.empty

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 7
3. Write a function that takes a sorted linked list of integers and mutates it so that all

duplicates are removed.
def remove_duplicates(lnk):

"""
>>> lnk = Link(1, Link(1, Link(1, Link(1, Link(5)))))
>>> remove_duplicates(lnk)
>>> lnk
Link(1, Link(5))
"""

Solution: Recursive solution:
if lnk is Link.empty or lnk.rest is Link.empty:

return
if lnk.first == lnk.rest.first:

lnk.rest = lnk.rest.rest
remove_duplicates(lnk)

else:
remove_duplicates(lnk.rest)

For a list of one or no items, there are no duplicates to remove.

Now consider two possible cases:

• If there is a duplicate of the first item, we will find that the first and second
items in the list will have the same values (that is, lnk.first == lnk.rest.first).
We can confidently state this because we were told that the input linked list
is in sorted order, so duplicates are adjacent to each other. We’ll remove the
second item from the list.

Finally, it’s tempting to recurse on the remainder of the list (lnk.rest), but
remember that there could still be more duplicates of the first item in the rest
of the list! So we have to recurse on lnk instead. Remember that we have
removed an item from the list, so the list is one element smaller than before.
Normally, recursing on the same list wouldn’t be a valid subproblem.

• Otherwise, there is no duplicate of the first item. We can safely recurse on the
remainder of the list.

Data C88C Summer 2024

DISCUSSION 9: MORE INHERITANCE AND LINKED LISTS Page 8

Iterative solution:
while lnk is not Link.empty and lnk.rest is not Link.

empty:
if lnk.first == lnk.rest.first:

lnk.rest = lnk.rest.rest
else:

lnk = lnk.rest

The loop condition guarantees that we have at least one item left to consider with
lnk.

For each item in the linked list, we pause and remove all adjacent items that have
the same value. Once we see that lnk.first != lnk.rest.first, we can
safely advance to the next item. Once again, this takes advantage of the property
that our input linked list is sorted.

Data C88C Summer 2024

