
TREES AND EXCEPTIONS 10
DATA C88C

July 25, 2024

1 Trees

1.1 Introduction

In computer science, trees are recursive data structures that are widely used in various
settings. Contrary to our ideas of a tree, in computer science, a tree branches downward.
The root of a tree starts at the top, and the leaves are at the bottom. A tree is considered a
recursive data structure because every branch from a node is also a tree.

1.2 Implementation

Recall that we have defined a tree as having a value and a list of branches. Below is the
most basic implementation of a Tree class that we will be using.
class Tree:

def __init__(self, value, branches=()):
for b in branches:

assert isinstance(b, Tree)
self.value = value
self.branches = list(branches)

def is_leaf(self):
return not self.branches

def __repr__(self):
if self.branches:

branches_str = ', ' + repr(self.branches)
else:

branches_str = ''
return 'Tree({0}{1})'.format(self.value, branches_str)



DISCUSSION 10: TREES AND EXCEPTIONS Page 2
Notice that with this implementation we can mutate a tree using attribute assignment.
>>> t = Tree(3, [Tree(4), Tree(5)])
>>> t.value = 5
>>> t
Tree(5, [Tree(4), Tree(5)])

1.3 Definitions

Here is an example tree:

7

1

3

2

−4 0

8

6

11

16

17

19

20

Some terminology regarding trees:

• Parent node: A node that has branches. Parent nodes can have multiple branches.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node of the tree. In our example, the node that contains 7 is the root.

• Label: The value at a node. In our example, all of the integers are values.

• Leaf: A node that has no branches. In our example, the nodes that contain −4, 0, 6,
17, and 20 are leaves.

• Branch: A subtree of the root. Note that trees have branches, which are trees them-
selves: this is why trees are recursive data structures.

• Depth: How far away a node is from the root. In other words, the number of edges
between the root of the tree to the node. In the diagram, the node containing 19 has
depth 1; the node containing 3 has depth 2. Since there are no edges between the root
of the tree and itself, the depth of the root is 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees. Some vary in the number of
branches each node has; others vary in the structure of the tree.

Data C88C Summer 2024



DISCUSSION 10: TREES AND EXCEPTIONS Page 3

2 Questions

1. What would Python display? If you believe an expression evaluates to a Tree object,
write Tree.
>>> t0 = Tree(0)
>>> t0.value

Solution: 0

>>> t0.branches

Solution: []

>>> t1 = Tree(0, [1, 2])#Is this a valid tree?

Solution: AssertionError #As the branches must be Tree objects

>>> t2 = Tree(0, [Tree(1), Tree(2, [Tree(3)])])
>>> t2.branches[0]

Solution: Tree(1)

>>> t2.branches[1].branches[0].value

Solution: 3

Data C88C Summer 2024



DISCUSSION 10: TREES AND EXCEPTIONS Page 4
2. Define a function make even which takes in a tree t whose values are integers, and

mutates the tree such that all the odd integers are increased by 1 but all the even
integers remain the same.
def make_even(t):

"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t.value
2
>>> t.branches[0].branches[0].value
4
>>> t
Tree(2, [Tree(2, [Tree(4)]), Tree(4), Tree(6)])
"""

Solution:
if t.value % 2 != 0:

t.value += 1
for branch in t.branches:

make_even(branch)

Data C88C Summer 2024



DISCUSSION 10: TREES AND EXCEPTIONS Page 5
3. Write a function that combines the values of two trees t1 and t2 together with the
combiner function. Assume that t1 and t2 have identical structure. This function
should return a new tree.
def combine_tree(t1, t2, combiner):

"""
>>> a = Tree(1, [Tree(2, [Tree(3)])])
>>> b = Tree(4, [Tree(5, [Tree(6)])])
>>> combined = combine_tree(a, b, mul)
>>> combined.value
4
>>> combined.branches[0].value
10
>>> combined
Tree(4, [Tree(10, [Tree(18)])])
"""

Solution:
combined = [combine_tree(b1, b2, combiner) for b1, b2

in zip(t1.branches, t2.branches)]
return Tree(combiner(t1.value, t2.value), combined)

Alternate solution without using zip:
combined = []
for i in range(len(t1.branches)):

combined.append(combine_tree(t1.branches[i], t2.
branches[i], combiner))

return Tree(combiner(t1.value, t2.value), combined)

Data C88C Summer 2024



DISCUSSION 10: TREES AND EXCEPTIONS Page 6

3 Exceptions

3.1 Introduction

Exceptions are used to signify when something goes wrong in your program. For in-
terpreters, they’re often used to categorize a case when the user inputs something that
doesn’t make sense (just try typing in Hi Soumya in your Python interpreter and see
what happens!)

There are two major things that you do with exceptions: raise and handle them.

Generally, to raise an exception you use the statement raise <expression>.

To handle an exception, you use a try-except block. The syntax is as follows:
try:

<try suite>
except <exception class> as <name>:

<except suite>
...

You can have multiple except suites for different types of exceptions that might occur in
the try suite.

3.2 Questions

1. How do we raise exceptions in Python?

Solution: An exception is a object instance with a class that inherits, either di-
rectly or indirectly, from the BaseException class. The assert statement introduced
in Chapter 1 raises an exception with the class AssertionError. In general, any ex-
ception instance can be raised with the raise statement. The general form of raise
statements are described in the Python docs. The most common use of raise con-
structs an exception instance and raises it.

>>> raise Exception('An error occurred')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
Exception: an error occurred

2. How do we handle raised exceptions? And why would we need to do so?

Solution: An exception can be handled by an enclosing try statement. A try state-
ment consists of multiple clauses; the first begins with try and the rest begin with

Data C88C Summer 2024



DISCUSSION 10: TREES AND EXCEPTIONS Page 7

except:

try:
<try suite>

except <exception class> as <name>:
<except suite>

The <try suite> is always executed immediately when the try statement is ex-
ecuted. Suites of the except clauses are only executed when an exception is raised
during the course of executing the try suite. Each except clause specifies the par-
ticular class of exception to handle.
We want to handle exceptions if we don’t want our program to crash immedi-
ately when it encounters an error, and if we can anticipate the errors that would
occur/have pre-defined ways of handling them.

Data C88C Summer 2024


