
FINAL REVIEW 12
DATA C88C

August 1, 2024

0.1 Environment Diagram

1. (Fall 2012) Draw the environment diagram.
def box(a):

def box(b):
def box(c):

a.append(c)
return (a, b)

return box
gift = box(1)
return (gift(2), gift(3))

box([4])

Solution: https://bitly.ws/33PRn

https://bitly.ws/33PRn

DISCUSSION 12: FINAL REVIEW Page 2

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 3
0.2 OOP

1. (Summer 2015 Final) The TAs are building a social networking website called CS61A+. The TAs plan
to represent the network in a class called Network that supports the following method:

• add friend(user1, user2) adds user1 and user2 to each other’s friends lists. If user1 or
user2 are not in the Network, add them to the dictionary of friends.

Help the TAs implement these two methods to make their social networking website popular!
class Network:

"""
>>> cs61a_plus = Network()
>>> cs61a_plus.add_friend('Robert', 'Jeffrey')
>>> cs61a_plus.friends['Robert']
['Jeffrey']
>>> cs61a_plus.friends['Jeffrey']
['Robert']
>>> cs61a_plus.add_friend('Jessica', 'Robert')
>>> cs61a_plus.friends['Robert']
['Jeffrey', 'Jessica']
"""
def __init__(self):

self.friends = {} # Maps users to a list of their friends

def add_friend(self, user1, user2):

if __:

if __:

Solution:
def add_friend(self, user1, user2):

if user1 not in self.friends:
self.friends[user1] = []

if user2 not in self.friends:
self.friends[user2] = []

self.friends[user1].append(user2)
self.friends[user2].append(user1)

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 4
CS61A+ turns out to be unpopular. To attract more users, the TAs want to implement a feature that
checks if two users have at most n degrees of separation. Consider the following CS61A+ Network:
self.friends = {

'Robert': ['Jeffrey', 'Jessica'],
'Jeffrey': ['Robert', 'Jessica', 'Yulin'],
'Jessica': ['Robert', 'Jeffrey', 'Yulin'],
'Yulin': ['Jeffrey', 'Jessica'],
'Albert': []

}

• There is 1 degree of separation between Robert and Jeffrey, because they are direct friends.

• There are 2 degrees of separation between Robert and Yulin (Robert → Jessica → Yulin)

• The degree of separation between Albert and anyone else is undefined, since Albert has no friends.
class Network:

Code from previous question

def degrees(self, user1, user2, n):
"""In these doctests, assume cs61a_plus is a Network with the
dictionary of friends described in the example.

>>> cs61a_plus.degrees('Robert', 'Yulin', 2) # Exactly 2 degrees
True
>>> cs61a_plus.degrees('Robert', 'Jessica', 2) # Less than 2

degrees
True
>>> cs61a_plus.degrees('Yulin', 'Robert', 1) # More than 1

degree
False
>>> cs61a_plus.degrees('Albert', 'Jessica', 10) # No friends!
False
"""
if ______________________________________:

return True
elif ____________________________________:

return False
for friend in _______________________________:

if ______________________________________:
return True

return ______________________________________

Solution:
class Network:

Code from previous question

def degrees(self, user1, user2, n):
"""
>>> cs61a_plus = Network()
>>> cs61a_plus.friends = {
... 'Robert': ['Jeffrey', 'Jessica'],

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 5

... 'Jeffrey': ['Robert', 'Jessica', 'Yulin'],

... 'Jessica': ['Robert', 'Jeffrey', 'Yulin'],

... 'Yulin': ['Jeffrey', 'Jessica'],

... 'Albert': []

... }
>>> cs61a_plus.degrees('Robert', 'Yulin', 2) # Exactly 2

degrees
True
>>> cs61a_plus.degrees('Robert', 'Jessica', 2) # Less than 2

degrees
True
>>> cs61a_plus.degrees('Yulin', 'Robert', 1) # More than 1

degree
False
>>> cs61a_plus.degrees('Albert', 'Jessica', 10) # No friends!
False
"""

if user1 == user2:

return True

elif n <= 0:

return False

for friend in self.friends[user1]:

if self.degrees(friend, user2, n - 1):

return True

return False

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 6
0.3 Trees

1. Write a function that takes in a tree and a value x and returns a list containing the nodes along the path
required to get from the root of the tree to a node containing x.

If x is not present in the tree, return None. Assume that the entries of the tree are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):
"""
>>> t = Tree(2, [Tree(7, [Tree(3), Tree(6, [Tree(5), Tree(11)])]),

Tree(15)])
>>> t.value
2
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 10) # returns None
"""

if _____________________________:

return _____________________________

_____________________________:

path = _____________________________

if _____________________________:

return _____________________________

Solution:
def find_path(tree, x):

if tree.value == x:
return [tree.value]

for b in tree.branches:
path = find_path(b, x)
if path:

return [tree.value] + path

Video walkthrough

Data C88C Summer 2024

https://www.youtube.com/watch?v=OnLa_VUrWiA&list=PLx38hZJ5RLZcgrSJp16YmzNwn9hL5JD8q&index=3&t=0m11s

DISCUSSION 12: FINAL REVIEW Page 7
0.4 Recursion

1. (Fall 2013) Fill in the blanks in the implementation of paths, which takes as input two positive integers
x and y. It returns the number of ways of reaching y from x by repeatedly incrementing or doubling.
For instance, we can reach 9 from 3 by incrementing to 4, doubling to 8, then incrementing again to 9.

def inc(x):
return x + 1

def double(x):
return x * 2

def paths(x, y):
"""Return the number of ways to reach y from x by repeated
incrementing or doubling.
>>> paths(3, 5) # inc(inc(3))
1
>>> paths(3, 6) # double(3), inc(inc(inc(3)))
2
>>> paths(3, 9) # E.g. inc(double(inc(3)))
3
>>> paths(3, 3) # No calls is a valid path
1
"""
if x > y:

return __

elif x == y:
return __

else:
return __

Solution:
def paths(x, y):

if x > y:
return 0

elif x == y:
return 1

else:
return paths(inc(x), y) + paths(double(x), y)

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 8
0.5 Linked List

1. You are trying to communicate with your project partner but Evil Eve is attempting to intercept your
messages. Write a function insert secret that takes a LinkedList, lnk, and a string secret and
mutates lnk by interleaving the secret message into the linked list. Look at the doctests for details.
(You can assume that the length of the secret message is less than or equal to the length of the linked
list)
def insert_secret(lnk, secret):

"""
>>> two_link = Link(1, Link(2))
>>> insert_secret(two_link, 'f')
>>> two_link
Link(1, Link('f', Link(2)))
>>> surprise = Link(8, Link(8))
>>> insert_secret(surprise, 'CS')
>>> surprise
Link(8, Link('C', Link(8, Link('S'))))
"""

Solution:
if secret == '':

return
new_link = Link(secret[0])
new_link.rest = lnk.rest
lnk.rest = new_link
insert_secret(lnk.rest.rest, secret[1:])

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 9
0.6 Iterator/Generator

1. Write a generator function generate_subsets that returns all subsets of the positive integers from 1
to n. Each call to this generator’s next method will return a list of subsets of the set [1, 2, ..., n],
where n is the number of previous calls to next.
def generate_subsets():

"""
>>> subsets = generate_subsets()
>>> for _ in range(3):
... print(next(subsets))
...
[[]]
[[], [1]]
[[], [1], [2], [1, 2]]
"""

Solution:
subsets = [[]]
n = 1
while True:

yield subsets
subsets = subsets + [s + [n] for s in subsets]
n += 1

We start with a base list of subsets. To get the next sequence of subsets, we need two things:

• All current subsets will continue to be valid subsets in the future.

• We take all the subsets we currently have, and add the next number. These are also valid
subsets.

Data C88C Summer 2024

DISCUSSION 12: FINAL REVIEW Page 10
0.7 SQL

1. Write a query that outputs all divisions for which there is more than one employee, and all pairs of
employees within that division have a salary less than 100,000.

Reminder: we are using a table named records that stores information about the employees at a small
company1. Each of the eight rows represents an employee.

Name Division Title Salary Supervisor
Ben Bitdiddle Computer Wizard 60000 Oliver Warbucks
Alyssa P Hacker Computer Programmer 40000 Ben Bitdiddle
Cy D Fect Computer Programmer 35000 Ben Bitdiddle
Lem E Tweakit Computer Technician 25000 Ben Bitdiddle
Louis Reasoner Computer Programmer Trainee 30000 Alyssa P Hacker
Oliver Warbucks Administration Big Wheel 150000 Oliver Warbucks
Eben Scrooge Accounting Chief Accountant 75000 Oliver Warbucks
Robert Cratchet Accounting Scrivener 18000 Eben Scrooge

Solution:
SELECT e1.division FROM records AS e1, records AS e2

WHERE e1.name < e2.name AND e1.division = e2.division
GROUP BY e1.division HAVING MAX(e1.salary + e2.salary) < 100000;

1Example adapted from Structure and Interpretation of Computer Programs

Data C88C Summer 2024

