
CS 88 Computational Structures in Data Science
Fall 2019 Mock Midterm Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5" × 11" crib sheet of
your own creation

• The exam is out of 40 points. We wish you all the best of luck!

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

By my signature, I certify that all
the work on this exam is my own,
and I will not discuss it with anyone
until final session is over. (please
sign)

http://berkeley.edu

2

1. (9 points) What Would Python Print

Answer the sequence of "What would Python Print" questions. For each, assume that the additional sequence
of statements is executed. If the result is an error, write Error. Likewise, if the result is a function, write
Function.

c, s, m = 4123, 3, 3

sub, add = lambda x, y: x - y, lambda x, y: x + y

def why(n, z):
b = 0
for i in range(z):

n, b = n // 10, b * 10 + n % 10
if n:

while z:
z = z - 1
high = pow(10, z)
n = n * 10 + b // high
b = b % high

return n

def a(b):
return lambda f, g: f(s, m) or g(b, s)

def circle():
c = True
while (lambda: c)():

circle = lambda: s + m
c = not c

return circle

Expression Interactive Output

>>> 1 + 2 3

>>> warmup = lambda p: p * 2
>>> warmup(warmup(3))

12

>>> c or not c
4123

Name: 3

Expression Interactive Output

>>> not c and c
False

>>> a_bit_harder = a(5)
>>> a_bit_harder

Function

>>> stilts = a_bit_harder(sub, add)
>>> stilts

8

>>> cherry = a_bit_harder(add, sub)
>>> cherry

6

>>> a_bit_harder(cherry, stilts)
Error

>>> sunny = a(c)
>>> sunny(why, why)

4321

>>> jag = circle()
>>> jag()

6

4

2. (8 points) Environment Diagram

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

Global frame

clown

kinda

nice 3

limes

goals 2.5

f1: clown [parent:Global]

now -10

clown

Return Value

f2: kinda [parent:Global]

nice 5

cool 2

really

Return Value 2.5

f3: λ<line 2> [parent:f1]

a 5

Return Value 2

f4: really [parent:f2]

Return Value 2.5

func clown(now) [parent=Global]

func kinda(nice, cool) [parent=Global]

func λ(a) <line 2> [parent=f1]

func really() [parent=f2]

1 def clown(now):
2 clown = lambda a: abs(now) // a
3 if not now:
4 clown = lambda a: now + a
5 return clown
6
7 def kinda(nice, cool):
8 def really():
9 return nice / 2

10 cool = cool(nice)
11 if cool:
12 return really()
13 return (lambda p: 14)(13)
14
15 nice = 3
16 limes = clown(-10)
17 goals = kinda(5, limes)

Name: 5

3. (3 points) Artwork

Anna (our protagonist) needs to find a job! She decides to dabble in artwork. Help Anna create the function
triangle which prints out a triangle of height k.

For a triangle of height 3, the first level has two spaces followed by one asterisk, the second level has one space
followed by three asterisks, and the third level has no spaces followed by five asterisks.

Hint: print(" ", end="") print the string " " without a newline afterwards.

def triangle(k):
""" Print out a triangle using '*' of height k
>>> triangle(3)

*

>>> triangle(4)

*

"""
for i in range(k):

x = " " * (k - i - 1) + "*" * (2 * i + 1)

print(x)

4. (0 points) Free Space

Enjoy!

6

5. (7 points) Math

(a) (3 pt) After realizing that artwork is far too difficult, Anna has decided to pursue mathematics. Recursively
implement many_factorial and multiply_squares.

For the entirety of this problem, you may use factorial defined below and assume n will always be an
integer greater than or equal to one.

def factorial(n):
""" Returns the factorial of n
>>> factorial(3) # 3 * 2 * 1
6
"""
if n == 1:

return 1
return n * factorial(n - 1)

def many_factorial(n):
""" Returns the product of the first n factorials
>>> many_factorial(3) # 3! * 2! * 1!
12
"""
if n == 1:

return 1

return factorial(n) * many_factorial(n - 1)

def multiply_squares(n):
""" Returns the product of the first n squares
>>> multiply_squares(3) # 9 * 4 * 1
36
"""
if n == 1:

return 1

return n * n * multiply_squares(n - 1)

(b) (2 pt) Anna realizes that much of her code above is repeated! She decides to make her code more concise by
combining all three of the functions above into one function — general_solver — which takes in a number
n and a one argument function func and returns the product of the first n calls to func.

def general_solver(n, func):
""" Returns the product of the first n calls to func
>>> general_solver(3, factorial) # 6 * 2 * 1
12
"""
if n == 1:

return 1

return func(n) * general_solver(n - 1, func)

Name: 7

(c) (2 pt) Next, fill in the two functions calls below so the first is equal to factorial(n) and the second is
equal to multiply_squares(n).

1. general_solver(n, lambda x: x) # equivalent of factorial(n)

2. general_solver(n, lambda x: x * x) # equivalent of multiply_squares(n)

6. (7 points) Encryption

(a) (1 pt) After getting bored of math, Anna decides encryption is her calling. First, implement list_to_string,
which takes a lst — a list of characters — and returns a string of the characters in lst.

def turn_to_string(lst):
"""Given a list of characters, turn them into a string
>>> turn_to_string(['f', 'r', 'i', 's', 'b', 'e', 'e'])
'frisbee'
"""
answer = ""

for x in lst:

answer += x

return answer

(b) (3 pt) Anna is now ready to code her first caesar cipher! Implement caesar_cipher which takes in a string
message and a number shift.

A caesar cipher adds the given shift (a number between 0 and 25) to each letter in the string, circling
around the alphabet if the shifted letter overshoots z.
For example, ’zoo’ shifted by 2 produces ’bqq’ (’z’ shifted 2 is ’b’, ’o’ shifted 2 is ’q’).

You may use turn_to_string (assuming it works) as well as the index_of and char_at functions defined
below.

def char_at(x):
"""Returns the character at the given index
>>> char_at(2) # a -> 0, b -> 1, c -> 2 ...
'c'
"""
...

def index_of(y):
"""Returns the index of the given character
>>> index_of('c') # a -> 0, b -> 1, c -> 2 ...
2
"""
...

Hints: You can iterate through strings. For example: [x for x in 'max'] → ['m', 'a', 'x']. In
addition, the modulo operation can be very helpful here!

8

def caesar_cipher(message, shift):
"""Apply the designated caesar cipher shift on the given message
>>> caesar_cipher("any", 2)
'cpa'
>>> caesar_cipher("hello", 1)
'ifmmp'
"""
return turn_to_string([char_at((index_of(m) + shift) % 26) for m in message])

(c) (3 pt) Anna wants to expand her encryption services! Instead of only encrypting messages, she now
wants to decrypt them. Assist Anna in implementing guess, which takes in two strings — encrypted
and possibility — and returns whether possibility can be shifted to produce encrypted.

You may use caesar_cipher (assuming it works).

def guess(encrypted, possibility):

"""Returns whether possibility can be the encrypted message, i.e., return if
possibility can be shifted to produce the message
>>> guess("hello", "ifmmp") #Shift of 25
True
>>> guess("hello", "izmmp")
False
>>> guess("ultimate", "ultimate") #Shift of zero
True
"""
return encrypted in [caesar_cipher(possibility, i) for i in range(26)]

Name: 9

7. (6 points) Sorted, Increasing Numbers

(a) (3 pt) Anna has decided to give up on finding a job. Instead, she has started exploring her curiosity in
sorted, increasing numbers. Without using lists, help Anna implement the unique_digits function, which
takes an sorted, increasing number a and returns the number of unique digits in a.

def unique_digits(a):
"""Given a number a that is in sorted, increasing order,
return the number of unique digits in a.
>>> unique_digits(11123)
3
>>> unique_digits(12345)
5
>>> unique_digits(9)
1
>>> unique_digits(0)
1
"""
if a < 10:

return 1

last, rest = a % 10, a // 10

if last == rest % 10:

return unique_digits(rest)

return 1 + unique_digits(rest)

(b) (3 pt) Implement missing_digits, which takes a sorted, increasing number a and returns the number of
missing digits in a. A missing digit is a number between the first and last digit of a that is not in a. Assume
a has no repeated numbers, i.e. all the digits are unique.

def missing_digits(a):
"""Given a number a that is in sorted, increasing order,
return the number of missing digits in a. A missing digit is
a number between the first and last digit of a that is not in a.
>>> missing_digits(1248) #3, 5, 6, 7
4
>>> missing_digits(123456) # No missing numbers
0
"""
if a < 10:

return 0

last, rest = a % 10, a // 10

return last - rest % 10 - 1 + missing_digits(rest)

