
 

Fall 2020 Final Exam Solutions 
CS 88  
WWPD 

Reverse Env. Diagram 

The Disney LINKup 

HOFfinetly a safe passcode 

The Silent TREEtment 

SQL for Sequels 

AlTeRnAtInG Generator 

Stop ORDERing me around 

Debugging 

One Giant Leap Forward, One Small Step back 

 
 

 



 

WWPD 
 
 
Question 1: Create a linked list called foo such that the following statement returns True. 
 
>>> len(foo.first) == len(foo.rest.first) and foo.first[0] == "t" and 
foo.rest.rest.rest == Link.empty 
True 

 
One example: 
foo = Link("turtle", Link("lizard", Link("frog"))) 
 
Explanation: 
The data type of the value in lnk.first and lnk.rest.first should be 
equal in length.  
 
The first element of foo.first should be equal to "t". 
 
Also, the linked list should only be 3 elements long, since 
foo.rest.rest.rest is Link.empty  

 
 

 
Question 2: Fill in the values for arg1 and arg2 
  
class Candy: 

def __init__(self, color, price): 
       self.color = color 
       self.price = price 
 
def shop(candies, colors): 

total = 0 
for candy in candies: 

if candy.color in colors: 
print("I like " + candy.color) 
total += candy.price 

else: 
print("I don't like " + candy.color) 

 return total 
 
>>> total = shop(arg1, arg2) 
I don't like blue 
I like red 



 

I like green 
I like red 
>>> print(total) 
42 
 
One example: 
arg1 = [Candy("blue", 10), Candy("red", 20), Candy("green", 2), 
Candy("red", 20)] 
arg2 = ["red", "green"] 
 
 
Explanation:  
arg1 needs to be a list of 4 Candy instances with the value of color 
for each one, respectively, being blue, red, green, and red in that 
order. Additionally, the last 3 candies’ prices should sum up to 42. 
 
arg2 should be an iterable (list, tuple, etc.) containing the strings 
"red" and "green", and should not contain "blue" because one of the 
print statements says “I don’t like blue”, which means blue is not in 
the iterable.  
   

Question 3: Explain in one sentence what the following function does if given an instance t 
of the Tree class. The Tree class is also included for reference. 
 
class Tree: 
    def __init__(self, entry, branches=[]): 
        self.entry = entry 
        for b in branches: 
            assert isinstance(b, Tree) 
        self.branches = branches 
 
    def is_leaf(self): 
        return not self.branches 
 
def mystery(t): 
    def strange(i, z): 
        m  = 0 
        if i % 2 == 0: 
            m += z.entry 
        return m + sum([strange(i+1, b) for b in z.branches]) 
    return strange(0, t) 

 
Adds up the values of entries of Tree nodes at even depths in the 
tree t.  
 



 

Reverse Env. Diagram 
 

1.  
def can(tab): 
    return _________ 
 
soda = lambda coke: lambda pepsi: ___________ 
pop = soda(____)(_____) 
 
 

 
 
def can(tab): 
    return tab + 1 
 
soda = lambda coke: lambda pepsi: pepsi(coke) 
pop = soda(3)(can) 
 
 
 
 



 

2.  
 
def make_school(name, location, coolness): 
    return ____________________________________ 
 
def find_better_school(school_1, school_2): 
    if school_1["coolness"] > school_2["coolness"]: 
        return ______________________ 
    else: 
        return ______________________ 
 
Berkeley = make_school("UC Berkeley", ___________, ________) 
Stanford = make_school("Stanford University", __________, ________) 
 
best_school = find_better_school(Berkeley, Stanford) 
 

 
 
def make_school(name, location, coolness): 
    return {"school_name": name, "loc": location, "coolness": 
coolness} 



 

 
def find_better_school(school_1, school_2): 
    if school_1["coolness"] > school_2["coolness"]: 
        return school_1["school_name"] 
    else: 
        return school_2["school_name"] 
 
Berkeley = make_school("UC Berkeley", "California", 1000) 
Stanford = make_school("Stanford University", "California", 0) 
 
best_school = find_better_school(Berkeley, Stanford) 
 
 

 



 

The Disney LINKup 
 
class Character: 
    def __init__(self, name, charm): 
        self.name = name 
        self.charm = charm 
 
    def __repr__(self): 
        return 'Character({0}, {1})'.format(self.name, self.charm) 
 

Your favorite Disney characters are preparing for an epic face-off, but you need to pair up 
characters into teams before the games begin! For this problem, you can imagine that the 
characters are standing in a line (represented as a linked list) .  
 
Question: Given a linked list of characters, return a list of pairs, where each pair is a two 
element list containing both characters on that team. Pairs should be created from left to 
right. However, if a Character is part of a team where their teammate has a greater charm 
factor than them, this Character’s charm factor increases to meet their teammate’s! 
 
Before you return the final teams, you should also print whether or not all the teams are full, 
i.e. if every team has two members. See the doctests on the message to print in either case! 
 

 



 

def make_pairs(lnk): 
    """ 
    >>> belle = Character("Belle", 35) 
    >>> simba = Character("Simba", 45) 
    >>> flynn = Character("Flynn", 30) 
    >>> teams1 = make_pairs(Link(belle, Link(simba, Link(flynn)))) 
    Not all teams are full! 
    >>> teams1 
    [[Character(Belle, 45), Character(Simba, 45)], [Character(Flynn, 30)]] 
    >>> mulan = Character("Mulan", 40) 
    >>> aladdin = Character("Aladdin", 30) 
    >>> olaf = Character("Olaf", 50) 
    >>> jafar = Character("Jafar", 5) 
    >>> teams2 = make_pairs(Link(mulan, Link(aladdin, Link(olaf, Link(jafar))))) 
    All teams full! 
    >>> teams2 
    [[Character(Mulan, 40), Character(Aladdin, 40)], [Character(Olaf, 50), 
Character(Jafar, 50)]] 
    """ 
 
    if lnk is Link.empty: 
        print("All teams full!") 
        return [] 
    elif lnk.rest is Link.empty: 
        print("Not all teams are full!") 
        return [[lnk.first]] 
    else: 
        lnk.first.charm = max(lnk.first.charm, lnk.rest.first.charm) 
        lnk.rest.first.charm = lnk.first.charm 
 
        return [[lnk.first, lnk.rest.first]] + make_pairs(lnk.rest.rest) 

 



 

HOFfinetly a safe passcode 
 

Fill out the blanks below to encode a passcode by adding numbers to each digit. The input of 

the encoder function is a list of single digit numbers to use to encode a certain passcode. The 

encoder function returns a function that will take in the passcode to encode.  

 
The way a passcode will be encoded is by incrementing each digit in the passcode by a 
number from the variable lst passed into the encoder function. It uses a number from lst one 
at a time to increment each digit in passcode, cycling around "lst" if necessary. See the 
doctests for some examples 
 
def encoder(lst):  

“”” 
Returns a function that will use the input list to encode an 
input passcode  
>>>increment_password = encoder([3]) 
>>>increment_password(“111”) 
“444” 
>>>encoder([1,2,3])(“234”) 
“357” 
>>>encoder([5,2])(“1111”) 
“6363” 
“””         

    def increment(passcode): 
        new_code = ""; 
        for i in ________________: 
            curr = ___(___________) + lst[__________] 
            new_code = ___________________ 
        return ___________________ 
    return ______________ 
 
Choose the runtime of the encoder function: 

a) O(1) b) O(n) c) O(n^2) d) O(2^n) 
 
Choose the runtime of the increment function: 

a) O(1) b) O(n) c) O(n^2) d) O(2^n) 

 
 



 

def encoder(lst):         
    def increment(passcode): 
        new_code = ""; 
        for i in range(len(passcode)): 
            curr = int(passcode[i]) + lst[i%len(lst)] 
            new_code = new_code + str(curr) 
        return new_code 
    return increment 
 
Select the runtime of the encoder function where n is the length of 
lst: a) O(1)  
 
Select the runtime of the increment function where n is the length of 
passcode: b) O(n) 
 

 



 

The Silent TREEtment 

In this problem, every node in a given Tree has a string as its entry. Your job is to 
write a function that, given a Tree T, will return its “message” which is defined as the 
messages of all of T’s branches (in order) followed by T.entry. If T is a leaf node, then 
T’s message is T.entry. 
 
However, some trees are not being cooperative and giving you the silent treatment - 
how rude! Any subtree that has an empty string as a message is giving you the silent 
treatment. If any of the subtrees in a tree T give you the silent treatment, then T’s 
entire message is an empty string. 
 
Assume that you will be passed a valid tree. 
 
>>> t = Tree(“abc”, [Tree(“def”, [Tree(“ghi”)]), Tree(“jkl”)]) 
>>> getTreeMsg(t) 
“ghidefjklabc” 
>>> t = Tree(“abc”, [Tree(“def”, [Tree(“”)]), Tree(“jkl”)]) 
>>> getTreeMsg(t) 
“” 

Skeleton: 
def getTreeMsg(tree): 
 if __________________: 
  return _________________ 
 msg = __________________________ 
 for ______________________________: 
  ______________________________ 
  if ______________________________: 
   ______________________________ 
  msg += ______________________________ 
     return ______________________________ 
 

Answer: 
def getTreeMsg(tree): 
 if tree.entry == “”: 
  return “” 
 msg = “” 
 for b in tree.branches: 
  branchMsg = getTreeMsg(b) 
  if branchMsg == “”: 
   return “” 
  msg += branchMsg 
     return msg + tree.entry 



 

SQL for Sequels 
 
CREATE TABLE books AS 
 SELECT “Sorcerer’s Stone” as name, 1 as number, “Harry Potter” 
as series UNION 
 SELECT “Chamber of Secrets”, 2, “Harry Potter” UNION 
 SELECT “Catching Fire”, 2, “Hunger Games” UNION 
 SELECT “Mockingjay”, 3, “Hunger Games” UNION 
 SELECT “Deathly Hallows”, 7, “Harry Potter” UNION 
 SELECT “Cat in the Hat”, 1, “N/A” UNION 
 SELECT “Tale of Two Cities”, 1, “N/A” UNION 
 SELECT “Divergent”, 1, “Divergent” UNION 
 SELECT “Insurgent”, 2, “Divergent” UNION 
 SELECT “Mark of Athena”, 3, “Heroes of Olympus” UNION  
 SELECT “House of Hades”, 4, “Heroes of Olympus” UNION 
 SELECT “Son of Neptune”, 2, “Heoes of Olympus”; 
 
CREATE TABLE series_authors AS 
 SELECT “Harry Potter” as series, “JK Rowling” as author, “UK” 
as country, “Yate” as city UNION 
 SELECT “Hunger Games”, “Suzanne Collins”, “USA”, “Hartford”  
UNION 
 SELECT “Divergent”, “Veronica Roth”, “USA”, “New York” UNION 
 SELECT “Heroes of Olympus”, “Rick Riordan”, “USA”, “San 
Antonio”; 
 
 

Use the above tables to write queries below. Keep in mind that not all blanks need to be 
filled in for each query to get the query correct.  
 
1. Write a SELECT statement which would output series with more than with more than two 
books in the books table 
 
Output: 
Harry Potter 
Heroes of Olympus 
 
SELECT ____________________________________ 
FROM _____________________________________ 
WHERE _____________________________________ 
GROUP BY __________________________________ 
HAVING ______________________________________ 
ORDER BY ____________________________________ 



 

 
 
 
Solution: 
SELECT books.series FROM books GROUP BY series HAVING count(*) > 2 
 

2. Given the tables above, write a SELECT statement which has each book name with the 
name of its direct sequel, meaning the book that comes right after it (ex. Book 5 is not Book 
2’s direct sequel but Book 3 is Book 2’s direct sequel). The prequel should be listed before the 
sequel.  
 
Output: 
Sorcerer’s Stone | Chamber of Secrets 
Catching Fire    | Mockingjay 
Divergent        | Insurgent 
Mark of Athena   | House of Hades 
Son of Neptune   | Mark of Athena          
 
SELECT ____________________________________ 
FROM _____________________________________ 
WHERE _____________________________________ 
GROUP BY __________________________________ 
HAVING ______________________________________ 
ORDER BY ____________________________________ 
 
 
Solution: 
SELECT prequel.name, sequel.name 
FROM books AS prequel, books AS sequel 
WHERE prequel.series = sequel.series AND prequel.number + 1 = 
sequel.number; 
 

3.Write a SELECT statement which would output the book name, author, and author’s city of 
birth for books in the books table that are the second book in a series of books and have 
authors from the USA. Order the output by the author’s name alphabetically. 
 
Output: 
Son of Neptune  | Rick Riordan       | San Antonio 
Catching Fire   | Suzanne Collins    | Hartford 
Insurgent       | Veronica Roth      | New York 
 
SELECT ____________________________________ 
FROM _____________________________________ 
WHERE _____________________________________ 
GROUP BY __________________________________ 



 

HAVING ______________________________________ 
ORDER BY ____________________________________ 

 
Solution: 
SELECT name, author, city 
FROM books, series_authors 
WHERE books.series = series_authors.series AND number = 2 AND country 
= “USA” 
ORDER BY author 

 
 

 



 

AlTeRnAtInG Generator 
 
Create a generator that when given 3 generators, cycles through yielding from each 
generator. 
 
def alternating_generator(gen1, gen2, gen3): 
    """ 
    >>> def evens(): 
            "a generator that generates even numbers starting at 2" 
    >>> def odds(): 
            "a generator that generates odd numbers starting at 1" 
    >>> def nines(): 
            "a generator that generates multiples of 9 starting at 9" 
 
    >>> gen = alternating_generator(evens, odds, nines) 
    >>> next(gen) # return a value from evens 
    2 
    >>> next(gen) # return a value from odds 
    1 
    >>> next(gen) # return a value from nines 
    9 
    >>> next(gen) # return a value from evens 
    4 
    >>> next(gen) # return a value from odds 
    3 
    """ 
    iter_lst = [gen1, gen2, gen3] 
    ________________________________ 
    ________________________________ 
    ________________________________ 
    ________________________________ 
 
def alternating_generator(gen1, gen2, gen3): 
    iter_lst = [gen1(), gen2(), gen3()] 
    while True: 
        for i in iter_lst: 
            yield next(i) 

 



 

Stop ORDERing me around 
You work for a shipping company and are making a program that creates an order.  Each 
order contains Packages.  Depending on the weight of the item, it either goes into a 
LargePackage or a SmallPackage (a package with greater than 5 units of weight is a 
LargePackage, and any other package is a SmallPackage)  
 
The cost for shipping for LargePackages is 5 and the cost of SmallPackages is 2.  Each order 
has a calculateShippingCost method that calculates the total shipping cost of the 
order.  It also has an allItems method which prints out the names of all the items in the 
order. 
 
 
>>>newOrder = Order() 
>>>newOrder.addItem("Keyboard", 2) 
>>>newOrder.addItem("Mouse", 1) 
>>>newOrder.addItem("Monitor", 6) 
 
>>>newOrder.calculateShippingCost()#2(Keyboard) + 2(Mouse) + 
5(Monitor) = 9 
9 
 
>>>newOrder.allItems() 
Keyboard 
Mouse 
Monitor 
 
>>>SmallPackage.shippingCost = 3 
>>>newOrder.calculateShippingCost()#3(Keyboard) + 3(Mouse) + 
5(Monitor) = 11 
11 
 
 
class Order: 
     
    def __init__(self): 
        self.packages = [] 
         
    def addItem(self, item, weight): 
        if weight > 5: 
            self.packages.append(LargePackage(item, weight)) 
        else: 
            self.packages.append(SmallPackage(item, weight)) 
         



 

    def calculateShippingCost(self): 
        totalCost = 0 
        for package in self.packages: 
            totalCost += package.shippingCost 
        return totalCost 
     
    def allItems(self): 
        for package in self.packages: 
            print(package.item) 
         
class Package: 
     
    def __init__(self, item, weight): 
        self.item = item 
        self.weight = weight 
         
class LargePackage(Package): 
     
    shippingCost = 5 
     
class SmallPackage(Package): 
     
    shippingCost = 2  



 

Debugging 
You are writing a function that takes in a list of pairs and a key.  The first element of each pair is 
an integer which represents a key and the second element is a string which represents the 
value.  The second argument to the function is a key.  The function removes each of the pairs 
that has a key that matches the inputted key.  Finally, it returns the values that were removed 
from the list, order of the returned values does not matter. 
 
def test_func(pairs, key): 

“”” 
>>>lst = [[1, "A"], [2, "B"], [1,"C"]] 
>>>test_func(lst, 1) 
[‘A’, ‘C’]              # [‘C’, ‘A’] is also acceptable 
>>>lst 
[[2, ‘B’]]              # Mutate the original list 
 
>>>lst2 = [[8, "pop?"], [8, "pop!"], [8, "pop."]] 
>>>test_func(lst2, 8) 
['pop.', 'pop!', 'pop?']  # Any order of the three pops is 

fine 
 >>>lst2 
 []                   # All of the pairs were removed 
 “”” 
1.    output = [] 
2.    for i in range(len(pairs)): 
3.        if pairs[i] == key: 
4.            output.append(pairs.pop(i)) 
5.    return output 
 

1. For the following doctest what should the function return 
 >>>lst = [[1, "one"], [2, "two"], [2, "Two!"], [1, "One!"]] 
 >>>test_func(lst, 1) 

2. What are the contents of lst after the doctest above has been 
run? 

3. For the input specified in part 1, what should (assume the 
function is working as intended) the function return? 

4. Identify 3 bugs in the function. For each bug, include the line 
number, the code that is incorrect and describe the fix (a few 
words is enough). There are 3 distinction types of bugs in the 
question, but some of the bugs have multiple ways of fixing 
them. After fixing the bugs, the function should work 
correctly. 

a. … 
b. … 
c. … 



 

5. Include a fully working definition of `test_func`: 
 
 

Answers 
1. Empty List, [], or Error 
2. Unchanged from before, [[1, "one"], [2, "two"], [2, "Two!"], [1, "One!"]], or Error 
3. [“one”, “One!”] 
4. 1st Bug: len(pairs) index pairs in order, while we need to index in the reverse order.   

The reason we need to go in reverse is because we are deleting items while in a for 
loop. If we do not do this, then our indexing will be off.  Another option is to make a 
copy and then remove from the original list after.  A final option would be to use a 
while loop. 
2nd Bug: The key is the first item of a pair, so to access the key, we must use `[0]`. 
3rd Bug: Our output should include only the first item of the pair. 

 
def test_func(pairs, key): 
 “”” 

>>> lst = [[1, "A"], [2, "B"], [1,"C"]] 
>>> test_func(lst, 1) 
>>> lst 

 “”” 
    output = [] 
    for i in range(len(pairs) - 1, -1, -1): 
        if pairs[i][0] == key: 
            output.append(pairs.pop(i)[1]) 
    return output 
 
 
Note: There were 3 acceptable ways to solve this problem that I 
encountered while grading, the first is looping in reverse order 
which is shown above.  Another way was using a copy of the list and 
then removing from the original list sometime after.  The last way 
was using a while loop or some sort of special indexing. 
 
 
 

 
 

 



 

One Giant Leap Forward, One Small Step 
back 
 
Jeff likes to traverse his LinkedLists weirdly. He likes to skip around a bit, specifically, jumping 
forward two and then jumping back one. As an example, if we had a linked list of: 
  
 1 -> 2 -> 3 -> 4 -> 5 
 
Jeff wants 1 then 3 then 2 then 4 then 3 then 5, ending when we get to the last value in the 
linked list. Jeff would like you to create an iterator for him to iterate through any linked list 
like this, beginning with the first value in the linked list and ending with the last value.  
 
class Link: 
    """ 
    >>> s = Link(1, Link(2, Link(3))) 
    >>> s 
    Link(1, Link(2, Link(3))) 
    """ 
    empty = () 
    def __init__(self, first, rest=empty): 
        assert rest is Link.empty or isinstance(rest, Link) 
        self.first = first 
        self.rest = rest 
 
class LinkedListIterator: 
    """ 

>>> ll = Link(1, Link(2, Link(3, Link(4, Link(5))))) 
 
>>> lst = [] 
>>> for i in LinkedListIterator(ll): 
...    lst.append(i) 
>>> print(lst) 

 [1, 3, 2, 4, 3, 5] 
    """ 
    def __init__(self, lnk): 
        self.pointer1 = ________________ 
        self.pointer2 = ________________ 
        self.counter = 0 
 
    def __iter__(self): 
        return self 
 



 

    def __next__(self): 
        if self.pointer2 is Link.empty: 
            __________________________ 
             
        if self.counter % 2 == 0: 
            return_value = ________________ 
            __________________________ 
        else: 
            return_value = ________________ 
            __________________________ 
             
        _____________________ 
         
        return return_value 
 

 



 

 
class Link: 
    """ 
    >>> s = Link(1, Link(2, Link(3))) 
    >>> s 
    Link(1, Link(2, Link(3))) 
    """ 
    empty = () 
    def __init__(self, first, rest=empty): 
        assert rest is Link.empty or isinstance(rest, Link) 
        self.first = first 
        self.rest = rest 
 
class LinkedListIterator: 
    """ 
    Two steps forward, one step back 
    """ 
    def __init__(self, lnk): 
        self.pointer1 = lnk 
        self.pointer2 = lnk.rest.rest 
        self.counter = 0 
 
    def __iter__(self): 
        return self 
 
    def __next__(self): 
        if self.pointer2 is Link.empty: 
            raise StopIteration 
             
        if self.counter % 2 == 0: 
            value = self.pointer1.first 
            self.pointer1 = self.pointer1.rest 
        else: 
            value = self.pointer2.first 
            self.pointer2 = self.pointer2.rest 
             
        self.counter += 1 
         
        return value 
 

 


	Fall 2020 Final Exam Solutions 
	 
	 
	 
	WWPD 
	Reverse Env. Diagram 
	 
	The Disney LINKup 
	HOFfinetly a safe passcode 
	 
	The Silent TREEtment 
	     return ______________________________ 
	SQL for Sequels 
	 
	AlTeRnAtInG Generator 
	 
	Stop ORDERing me around 
	Debugging 
	 
	One Giant Leap Forward, One Small Step back 

