951828021 Computational Structures in Data SCience

MIDTERM SOLUTIONS
|
INSTRUCTIONS

This is your exam. Complete it either at exam.cs6la.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.
(O You must choose either this option
(O Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.
O You could select this choice.
0 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

e Online Exams: You may start you exam as soon as you are given the password.
¢ You may have a digitial version of the CS88 Reference Sheet, or the PDF, but no other files.
e Open Reference Sheet

https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing

Exam generated for <EMAILADDRESS> 3

1. (5.0 points) WWPD

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If a
function is outputted, write “function”. Your answers must fit within the boxes provided. Work outside the
boxes will not be graded.

(a) (1.0 pt)

>>> False or 1 and 8 or True

8

(b) (2.0 pt)
>>> lucky = (lambda x: lambda y: (y - x) % 8 == 0)(8)

>>> def mystery(x, y):
if lucky(x):
print('ready')
while x > y:
x=x // 10
print(x)
return 'go'

>>> mystery (40, 2)

ready
4

Igo

(c) (2.0 pt) Note the variable lucky and the mystery function are redefined here for your convenience.

>>> lucky = (lambda x: lambda y: (y - x) % 8 == 0)(8)

>>> def mystery(x, y):
if lucky(x):
print('ready"')
while x > y:
x=x// 10
print(x)
return 'go'

>>> print('a', mystery(7, 9))

a go

Exam generated for <EMAILADDRESS> 4

2. (7.0 points) Environment Diagram Analysis

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right. Some
arrows have been removed from the diagram. You may wish to draw in the arrows, but it is not required.

Global frame jelly | ——— func jelly(bean) [parent=Glebal]
bean | —T———=>,| [list items omitted] [(a
|
fish | v
f1: jf}}f[_____ [parent=_____f%lfgglj p- func jelly(fish) [parent= | (a) 1
bean | 1 def jelly(bean):
. 2 def jelly(fish):
jelly | — 3 i=o
4 while i < len(fish):
e
Return Value (e) 5 item = fish[i]
2 3 <] if len(item) % 2 ==
3 7 bean.extend(item)
f2: 1elly_____ [parent=___f1______ 4 8 else:
. -~ [9 bean.append(item)
fish | > I 10 i+=11
11 return jell
i | 2 v 1=t
item | > (b) e]tfag = geh[taj ;
ish = jelly(bean
Return Value 14 fish([[2, 31, [4, 5, 611)
15 print{len({bean))

Question 2 Environment Diagram

(a) (1.0 pt) (a) What is the parent frame of the jelly function on line 27

f1

(b) (1.0 pt) (b) What is the final value of item in the £2 frame when the environment diagram is complete?

[4, 5, 6]

(c) (1.0 pt) (c) What is the return value of the £2 frame?

None

(d) (2.0 pt) (d) For the variable bean in the f£1 frame, what is bean[4] when the environment diagram is
complete?

[4, 5, 6]

(e) (1.0 pt) (e) What is the return value of frame £17

func jelly(fish) [parent=f1]

Exam generated for <EMAILADDRESS>

(f) (1.0 pt) Line 15 What is len(bean) in the global frame?

5

Exam generated for <EMAILADDRESS> 6

3. (5.0 points) Just Keep Summing

Implement the function sum_until, which takes in an integer total, and returns a one-argument function,
add_num. The add_num function keeps accepting integers until the sum of all the integers it has accepted reaches
or exceeds the total, in which case it returns True or False respectively.

The expected behavior of the function is detailed in the doctests below.

def sum_until(total):
>>> f = sum_until(0)
>>> £(0) # 0 =0

True

>>> f(-7) # -7 < 0, so continue to accept more numbers
<function sum_until.<locals>.add_num at>

>>> £(-7)(B)(2) # -T+5+2 =0

True

>>> £(-7)(6)(8) # -7+ 5 +8 =6 >0

False

>>> g = sum_until(-5)
>>> g(-6)(3) # -6 + 3 = -3 > -5
False
>>> g(-11)(-2)(-2) (4)(6) # -11 + -2 + -2 + 4 + 6 = -5
True
def add_num(x):
if x > total:

return _____________ Part A________________
elif _____________ Part B________________
return _____________ Part C________________
return sum_until(_____________ Part D________________)

return add_num

(a) (1.0 pt) Fill in the code for Part A.

False

(b) (1.0 pt) Fill in the code for Part B.

x == total

(c) (1.0 pt) Fill in the code for Part C.

True

(d) (2.0 pt) Fill in the code for Part D.

total - x

Exam generated for <EMAILADDRESS> 7

4. (7.0 points) Flip Flop

Implement the f1ip_flop function which takes in a non negative number n and computes the value generated
when alternating between adding then subtracting each of the digits in n from left to right.

You may use the get_length function that takes in an integer n and returns the number of digits in n. This
function’s implementation is hidden, but you can assume it works correctly.
def get_length(n):

Helper function that computes the number of digits in an

integer.

>>> get_length(7)

1

>>> get_length(123)

3

>>> get_length(454545)

6

Implementation hidden

def flip_flop(n):
nnn
>>> flip_flop(124) # 1 + 2 - 4
-1
>>> flip_flop(7315) # 7 + 3 - 1 + 5
14
>>> flip_flop(61323) # 6 + 1 - 3 + 2 - 3
3

else:
return

(a) (7.0 pt) Write the fully completed £1ip_flop function below using the skeleton code provided. You may
not add, change, or delete lines from the skeleton code

Don’t forget to use the helper function get_length(n).

def flip_flop(n):
if n < 10:
return n
else:
last_digit = n % 10
if get_length(n) % 2 == 0:
return flip_flop(n // 10) + last_digit
else:
return flip_flop(n // 10) - last_digit

Exam generated for <EMAILADDRESS> 8

5. (8.0 points) Cra88y Crawl

You are working at an amusement park this summer and are in charge of the Cra88y Crawl ride! Complete the
following questions to collect information that can improve visitors’ experience on this ride!

The line of visitors is represented as a list of two element tuples.

e The first element in the tuple is the time when the visitor joined the line.
e The second element is the amount of time the visitor is expected to wait to begin their ride. Time is
represented as the number of minutes elapsed since the amusement park opened for that day.

For example, the tuple (80, 40) represents that a visitor joined at the 80th minute and is expected to wait in
line for 40 minutes.

(a) (3.0 pt) Complete the return statement for the expected_start_times function that, given a line, returns
a list of the times (represented in minutes) at which every visitor is expected to start their ride!

def expected_start_times(line):
nun
>>> expected_start_times([(80, 40), (105, 20)]1)
[120, 125]
>>> expected_start_times([(5, 15), (8, 12), (14, 6), (222, 3)1)
[20, 20, 20, 225]
>>> expected_start_times([(4, 6), (5, 5), (5, 5), (6, 15), (100,
20), (150, 0)1)
[10, 10, 10, 21, 120, 150]

return

[visitor[0] + visitor[1] for visitor in line]

Exam generated for <EMAILADDRESS> 9

(b) (5.0 pt) Implement the remove_frustrated_visitors function that removes the tuples corresponding
to visitors who are expected to wait more than max_wait_time minutes in line.

def remove_frustrated_visitors(line, max_wait_time):
>>> line_a = [(80, 40), (105, 20)] # format per tuple: (join time, expected wait time)
>>> remove_frustrated_visitors(line_a, 15)
>>> line_a
[]
>>> line_b = [(5, 15), (8, 12), (14, 6), (222, 3)]
>>> remove_frustrated_visitors(line_b, 10)
>>> line_b
[(14, &), (222, 3)]
>>> line_c = [(4, 6), (5, 5), (5, 5), (6, 15), (100, 20), (150, 0)]
>>> remove_frustrated_visitors(line_c, 5)
>>> line_c
[(5, B), (5,), (150, 0)]
position = 0
while position < len(line):
if

Fill in the solution in the spce provided. You should not need to add or remove lines.

def remove_frustrated_vistiors(line, max_wait_time):
position = 0
while position < len(line):
if line[position] [1] > max_wait_time:
line.pop(position)
else:
position += 1

Exam generated for <EMAILADDRESS>

6. (7.0 points) Chef’s Assistant

You are a chef managing orders for your restaurant! Every order consists of a food item and its quantity.

10

Implement the function add_new_orders which takes in a dictionary all_orders representing the orders a
chef is currently assigned, and mutates it to include new orders from the list new_orders. Each element in
new_orders is a tuple, where the first element is the food item and the second element is that item’s quantity.

def add_new_orders(all_orders, new_orders):

>>> order = {'fries': 3, 'burger': 4}
>>> add_new_orders(order, [('fries', 4), ('milk', 2)1)

>>> order == {'fries': 7, 'burger': 4, 'milk': 2}
True
>>> add_new_orders(order, [('fries', 2), ('taco', 1)1)
>>> order == {'fries': 9, 'burger': 4, 'milk': 2, 'taco': 1}
True
nnn
if
return

food_item = new_orders[0] [0]
quantity = new_orders[0] [1]
if

(a) (7.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def add_new_orders(all_orders, new_orders):
if len(new_orders) ==
return
item = new_orders[0] [0]
quantity = new_orders[0] [1]
if item in all_orders:
all_orders[item] += quantity
else:
all_orders[item] = quantity
add_new_orders(all_orders, new_orders([1:])

Exam generated for <EMAILADDRESS> 11

7. (6.0 points) Smoooooooooth

Your friend is trying to implement a function smooth which takes in a list of integers, 1st, and returns a smooth
version of the list, where smoothing a list means connecting each of the adjacent integers in the old list with
consecutive integers.

For example, the smoothed version of [1, 5, 3] is [1, 2, 3, 4, 5, 4, 3], and the smoothed version of [1,
3, 4, 6]is [1, 2, 3, 4, 5, 6]. There is guaranteed to be at least one number in the list and there will not
be identical numbers consecutively, so [1, 1, 1, 1] is an invalid input. Your friend’s code has 3 bugs which
you need to find!

1. def smooth(lst):

2 new_1st = []

3 for i in range(len(lst) - 1):
4. curr = 1st[i]

5. next = lst[i + 1]

6 while curr != next:
7 new_1st + [curr]
8 if curr > next:
9. curr += 1
10. else:

11. curr -= 1
12. return new_lst

In each box: Identify one of the 3 unique bugs and explain how to fix each bug. You must specify the line
number you would change or delete, or between which lines you would add a new line of code.

(a) (2.0 pt)

Line 7 should be new_1st.append(curr)

(b) (2.0 pt)

Line 8 should be if curr < next:

(c) (2.0 pt)

Line 12, insert before: new_1st.append(1lst[-1]).

Exam generated for <EMAILADDRESS> 12

8. (10.0 points) Overlap

You are working on representing users on a new messaging app called Overlap, which focuses on users’ interests
as a way to connect them! Every User has a name, a list of interests, and a list of followers!

Implement the following functions of the User class based on the descriptions below. For a given User, a_user,
we should be able to execute:

e a_user.add_follower (other_user): Takes in another User object other_user and adds it to this user’s
followers list if they are not already in the list

e a_user.mutual_interests(other_user): Takes in another User object other_user and returns a list
containing all of this user’s interests that are shared with other_user

e a_user.find_new_interest(): Returns a string representing a new interest for this User. To determine
this new interest, first identify this user’s follower that has the largest number of mutual interests with this
user. Then return a randomly selected interest from this follower. But be careful, this randomly selected
interest must not already exist in this user’s interests (otherwise it would not be new!). Assume that the
user’s interests and followers are non-empty.

import random

class User:
def __init__(self, name, interests=[]):
self.name = name
self.interests = interests
self.followers (1

def add_follower(self, other_user):
nmnn Part A nnn

def mutual_interests(self, other_user):
nmnn Part B nnn

def separate_interests(self, other_user):
""" Implementation not shown. Assume that this function takes in
another User object and returns a list containing all
of this user’s interests that are NOT shared with other_user"""

def find_new_interest(self):
nmnn Part C nnn

Exam generated for <EMAILADDRESS> 13

(a) i. (3.0 pt) Implement the add_follower method which takes in another User object, other_user, and
adds that user to this user’s followers list if they are not already in the list.

def add_follower(self, other_user):

>>> ul = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking'])
>>> u3 = User('mike', ['poker', 'tv', 'cooking'])

>>> ul.add_follower (u2)

>>> ul.add_follower (u3)

>>> ul.add_follower(u2) # no change
>>> [u.name for u in ul.followers]
['alice', 'mike']

Write the fully add_follower function below using the skeleton code provided. You may not add,
change, or delete lines from the skeleton.

def add_follower(self, follower):
if follower not in self.followers:
self.followers.append(follower)

Exam generated for <EMAILADDRESS> 14

(b) i. (3.0 pt) Implement the mutual_interests method which takes in another User object, other_user,
and returns a list containing all of this user’s interests that are shared with other_user. (Again, there
is no need to copy the doctests.)

def mutual_interests(self, other_user):
nnn
>>> ul = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking'])
>>> u3 = User('mike', ['poker', 'tv', 'cooking'])
>>> ul.mutual_interests(u2)
['cooking']
>>> ul.mutual_interests(u3)
['cooking', 'tv']
nmnn

return

Complete the return statement of the mutual_interests function below.

def mutual_interests(self, other_user):
return [i for i in self.interests if i in other_user.interests]

Exam generated for <EMAILADDRESS> 15

(c)

i. (4.0 pt) Implement the find_new_interest method that returns a string representing a new potential
interest for this User. To determine this new interest, first identify this user’s most similar follower
that has the largest number of mutual interests with this user. Then return a randomly selected
interest from this follower. But be careful, this randomly selected interest must not already exist in
this user’s interests (otherwise it would not be new!).

For this problem, assume that the user’s interests and followers are non-empty. Note that the
separate_interests function (see User class skeleton) may be helpful here. You may use random. choice (1st)
to return a radomly selected item from a list, 1st.

def find_new_interest(self):
nnn

>>> ul = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking']) # has one in common with bob
>>> u3 = User('mike', ['poker', 'tv', 'cooking']) # has two in common with bob

>>> ul.add_follower (u2)
>>> ul.add_follower (u3)
>>> ul.find_new_interest()
'poker'

most_similar_follower = max(

Write the fully completed £find_new_interest function below using the skeleton code provided. You
may not add, change, or delete lines from the skeleton code.

def find_new_interest(self):
most_similar_follower =
max (self.followers,

key = lambda x: len(self.mutual_interests(x))

)

return random.choice(most_similar_follower.separate_interests(self))

Exam generated for <EMAILADDRESS>

No more questions.

16

