
CS 88 Computational Structures in Data Science
Fall 2021 Midterm

INSTRUCTIONS

• You have 120 minutes to complete the exam. Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of CS88.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If
something happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with
proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets
of your own creation and the official CS88 Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may not use example functions defined on your study guide unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Online Exams: You may start you exam as soon as you are given the password.
• You may have a digitial version of the CS88 Reference Sheet, or the PDF, but no other files.
• Open Reference Sheet

https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing
https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing

Exam generated for <EMAILADDRESS> 2

1. (5.0 points) WWPD

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If a
function is outputted, write “function”. Your answers must fit within the boxes provided. Work outside the
boxes will not be graded.

(a) (1.0 pt)

>>> False or 1 and 8 or True

(b) (2.0 pt)

>>> lucky = (lambda x: lambda y: (y - x) % 8 == 0)(8)

>>> def mystery(x, y):
... if lucky(x):
... print('ready')
... while x > y:
... x = x // 10
... print(x)
... return 'go'

>>> mystery(40, 2)

(c) (2.0 pt) Note the variable lucky and the mystery function are redefined here for your convenience.

>>> lucky = (lambda x: lambda y: (y - x) % 8 == 0)(8)

>>> def mystery(x, y):
... if lucky(x):
... print('ready')
... while x > y:
... x = x // 10
... print(x)
... return 'go'

>>> print('a', mystery(7, 9))

Exam generated for <EMAILADDRESS> 3

2. (7.0 points) Environment Diagram Analysis

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right. Some
arrows have been removed from the diagram. You may wish to draw in the arrows, but it is not required.

Question 2 Environment Diagram

(a) (1.0 pt) (a) What is the parent frame of the jelly function on line 2?

(b) (1.0 pt) (b) What is the final value of item in the f2 frame when the environment diagram is complete?

(c) (1.0 pt) (c) What is the return value of the f2 frame?

(d) (2.0 pt) (d) For the variable bean in the f1 frame, what is bean[4] when the environment diagram is
complete?

Exam generated for <EMAILADDRESS> 4

(e) (1.0 pt) (e) What is the return value of frame f1?

(f) (1.0 pt) Line 15 What is len(bean) in the global frame?

Exam generated for <EMAILADDRESS> 5

3. (5.0 points) Just Keep Summing

Implement the function sum_until, which takes in an integer total, and returns a one-argument function,
add_num. The add_num function keeps accepting integers until the sum of all the integers it has accepted reaches
or exceeds the total, in which case it returns True or False respectively.

The expected behavior of the function is detailed in the doctests below.

def sum_until(total):
"""
>>> f = sum_until(0)
>>> f(0) # 0 = 0
True
>>> f(-7) # -7 < 0, so continue to accept more numbers
<function sum_until.<locals>.add_num at>
>>> f(-7)(5)(2) # -7 + 5 + 2 = 0
True
>>> f(-7)(5)(8) # -7 + 5 + 8 = 6 > 0
False
>>> g = sum_until(-5)
>>> g(-6)(3) # -6 + 3 = -3 > -5
False
>>> g(-11)(-2)(-2)(4)(6) # -11 + -2 + -2 + 4 + 6 = -5
True
"""
def add_num(x):

if x > total:
return _____________Part A________________

elif _____________Part B________________:
return _____________Part C________________

return sum_until(_____________Part D________________)
return add_num

(a) (1.0 pt) Fill in the code for Part A.

(b) (1.0 pt) Fill in the code for Part B.

(c) (1.0 pt) Fill in the code for Part C.

(d) (2.0 pt) Fill in the code for Part D.

Exam generated for <EMAILADDRESS> 6

4. (7.0 points) Flip Flop

Implement the flip_flop function which takes in a non negative number n and computes the value generated
when alternating between adding then subtracting each of the digits in n from left to right.

You may use the get_length function that takes in an integer n and returns the number of digits in n. This
function’s implementation is hidden, but you can assume it works correctly.

def get_length(n):
"""
Helper function that computes the number of digits in an
integer.
>>> get_length(7)
1
>>> get_length(123)
3
>>> get_length(454545)
6
"""
Implementation hidden

def flip_flop(n):
"""
>>> flip_flop(124) # 1 + 2 - 4
-1
>>> flip_flop(7315) # 7 + 3 - 1 + 5
14
>>> flip_flop(61323) # 6 + 1 - 3 + 2 - 3
3
"""
if ____________________________________:

else:

last_digit = ____________________________________
if ____________________________________:

return ____________________________________
else:

return ____________________________________

Exam generated for <EMAILADDRESS> 7

(a) (7.0 pt) Write the fully completed flip_flop function below using the skeleton code provided. You may
not add, change, or delete lines from the skeleton code.

Don’t forget to use the helper function get_length(n).

def flip_flop(n):

if ___:

else:

last_digit = __

if ___:

return __

else:

return __

Exam generated for <EMAILADDRESS> 8

5. (8.0 points) Cra88y Crawl

You are working at an amusement park this summer and are in charge of the Cra88y Crawl ride! Complete the
following questions to collect information that can improve visitors’ experience on this ride!

The line of visitors is represented as a list of two element tuples.

• The first element in the tuple is the time when the visitor joined the line.
• The second element is the amount of time the visitor is expected to wait to begin their ride. Time is
represented as the number of minutes elapsed since the amusement park opened for that day.

For example, the tuple (80, 40) represents that a visitor joined at the 80th minute and is expected to wait in
line for 40 minutes.

(a) (3.0 pt) Complete the return statement for the expected_start_times function that, given a line, returns
a list of the times (represented in minutes) at which every visitor is expected to start their ride!

def expected_start_times(line):
"""
>>> expected_start_times([(80, 40), (105, 20)])
[120, 125]
>>> expected_start_times([(5, 15), (8, 12), (14, 6), (222, 3)])
[20, 20, 20, 225]
>>> expected_start_times([(4, 6), (5, 5), (5, 5), (6, 15), (100,
20), (150, 0)])
[10, 10, 10, 21, 120, 150]
"""
return __

Exam generated for <EMAILADDRESS> 9

(b) (5.0 pt) Implement the remove_frustrated_visitors function that removes the tuples corresponding
to visitors who are expected to wait more than max_wait_time minutes in line.

def remove_frustrated_visitors(line, max_wait_time):
"""
>>> line_a = [(80, 40), (105, 20)] # format per tuple: (join time, expected wait time)
>>> remove_frustrated_visitors(line_a, 15)
>>> line_a
[]
>>> line_b = [(5, 15), (8, 12), (14, 6), (222, 3)]
>>> remove_frustrated_visitors(line_b, 10)
>>> line_b
[(14, 6), (222, 3)]
>>> line_c = [(4, 6), (5, 5), (5, 5), (6, 15), (100, 20), (150, 0)]
>>> remove_frustrated_visitors(line_c, 5)
>>> line_c
[(5, 5), (5, 5), (150, 0)]
"""
position = 0
while position < len(line):

if ____________________________________:

else:

Fill in the solution in the spce provided. You should not need to add or remove lines.

def remove_frustrated_visitors(line, max_wait_time):

position = 0

while position < len(line):

if ___:

else:

Exam generated for <EMAILADDRESS> 10

6. (7.0 points) Chef’s Assistant

You are a chef managing orders for your restaurant! Every order consists of a food item and its quantity.

Implement the function add_new_orders which takes in a dictionary all_orders representing the orders a
chef is currently assigned, and mutates it to include new orders from the list new_orders. Each element in
new_orders is a tuple, where the first element is the food item and the second element is that item’s quantity.

def add_new_orders(all_orders, new_orders):
"""
>>> order = {'fries': 3, 'burger': 4}
>>> add_new_orders(order, [('fries', 4), ('milk', 2)])
>>> order == {'fries': 7, 'burger': 4, 'milk': 2}
True
>>> add_new_orders(order, [('fries', 2), ('taco', 1)])
>>> order == {'fries': 9, 'burger': 4, 'milk': 2, 'taco': 1}
True
"""
if ___:

return
food_item = new_orders[0][0]
quantity = new_orders[0][1]
if ___:

else:

add_new_orders(_________________________, _________________________)

(a) (7.0 pt) Complete the skeleton code. You may not add, change, or delete lines from the skeleton code.

def add_new_orders(all_orders, new_orders):

if ______________________________:

return

food_item = new_orders[0][0]

quantity = new_orders[0][1]

if ______________________________:

else:

add_new_orders(________________, ________________)

Exam generated for <EMAILADDRESS> 11

7. (6.0 points) Smoooooooooth

Your friend is trying to implement a function smooth which takes in a list of integers, lst, and returns a smooth
version of the list, where smoothing a list means connecting each of the adjacent integers in the old list with
consecutive integers.

For example, the smoothed version of [1, 5, 3] is [1, 2, 3, 4, 5, 4, 3], and the smoothed version of [1,
3, 4, 6] is [1, 2, 3, 4, 5, 6]. There is guaranteed to be at least one number in the list and there will not
be identical numbers consecutively, so [1, 1, 1, 1] is an invalid input. Your friend’s code has 3 bugs which
you need to find!

1. def smooth(lst):
2. new_lst = []
3. for i in range(len(lst) - 1):
4. curr = lst[i]
5. next = lst[i + 1]
6. while curr != next:
7. new_lst + [curr]
8. if curr > next:
9. curr += 1
10. else:
11. curr -= 1
12. return new_lst

In each box: Identify one of the 3 unique bugs and explain how to fix each bug. You must specify the line
number you would change or delete, or between which lines you would add a new line of code.

(a) (2.0 pt)

(b) (2.0 pt)

(c) (2.0 pt)

Exam generated for <EMAILADDRESS> 12

8. (10.0 points) Overlap

You are working on representing users on a new messaging app called Overlap, which focuses on users’ interests
as a way to connect them! Every User has a name, a list of interests, and a list of followers!

Implement the following functions of the User class based on the descriptions below. For a given User, a_user,
we should be able to execute:

• a_user.add_follower(other_user): Takes in another User object other_user and adds it to this user’s
followers list if they are not already in the list

• a_user.mutual_interests(other_user): Takes in another User object other_user and returns a list
containing all of this user’s interests that are shared with other_user

• a_user.find_new_interest(): Returns a string representing a new interest for this User. To determine
this new interest, first identify this user’s follower that has the largest number of mutual interests with this
user. Then return a randomly selected interest from this follower. But be careful, this randomly selected
interest must not already exist in this user’s interests (otherwise it would not be new!). Assume that the
user’s interests and followers are non-empty.

import random

class User:
def __init__(self, name, interests=[]):

self.name = name
self.interests = interests
self.followers = []

def add_follower(self, other_user):
""" Part A """

def mutual_interests(self, other_user):
""" Part B """

def separate_interests(self, other_user):
""" Implementation not shown. Assume that this function takes in
another User object and returns a list containing all
of this user’s interests that are NOT shared with other_user"""

def find_new_interest(self):
""" Part C """

Exam generated for <EMAILADDRESS> 13

(a) i. (3.0 pt) Implement the add_follower method which takes in another User object, other_user, and
adds that user to this user’s followers list if they are not already in the list.

def add_follower(self, other_user):
"""
>>> u1 = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking'])
>>> u3 = User('mike', ['poker', 'tv', 'cooking'])
>>> u1.add_follower(u2)
>>> u1.add_follower(u3)
>>> u1.add_follower(u2) # no change
>>> [u.name for u in u1.followers]
['alice', 'mike']
"""
if ___:

Write the fully add_follower function below using the skeleton code provided. You may not add,
change, or delete lines from the skeleton.

def add_follower(self, other_user):

if ___:

Exam generated for <EMAILADDRESS> 14

(b) i. (3.0 pt) Implement the mutual_interests method which takes in another User object, other_user,
and returns a list containing all of this user’s interests that are shared with other_user. (Again, there
is no need to copy the doctests.)

def mutual_interests(self, other_user):
"""
>>> u1 = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking'])
>>> u3 = User('mike', ['poker', 'tv', 'cooking'])
>>> u1.mutual_interests(u2)
['cooking']
>>> u1.mutual_interests(u3)
['cooking', 'tv']
"""
return ___

Complete the return statement of the mutual_interests function below.

Exam generated for <EMAILADDRESS> 15

(c) i. (4.0 pt) Implement the find_new_interest method that returns a string representing a new potential
interest for this User. To determine this new interest, first identify this user’s most similar follower
that has the largest number of mutual interests with this user. Then return a randomly selected
interest from this follower. But be careful, this randomly selected interest must not already exist in
this user’s interests (otherwise it would not be new!).

For this problem, assume that the user’s interests and followers are non-empty. Note that the
separate_interests function (see User class skeleton) may be helpful here. You may use random.choice(lst)
to return a radomly selected item from a list, lst.

def find_new_interest(self):
"""
>>> u1 = User('bob', ['cooking', 'archery', 'tv'])
>>> u2 = User('alice', ['shopping', 'guitar', 'cooking']) # has one in common with bob
>>> u3 = User('mike', ['poker', 'tv', 'cooking']) # has two in common with bob
>>> u1.add_follower(u2)
>>> u1.add_follower(u3)
>>> u1.find_new_interest()
'poker'
"""
most_similar_follower = max(

____________________________________,
key = _______________________________________

)
return random.choice(___)

Write the fully completed find_new_interest function below using the skeleton code provided. You
may not add, change, or delete lines from the skeleton code.

def find_new_interest(self):

most_similar_follower = max(

____________________________________,

key = _______________________________________

)

return random.choice(___)

Exam generated for <EMAILADDRESS> 16

No more questions.

