951828022 Computational Structures in Data SCience

MIDTERM
___|
INSTRUCTIONS

e Do NOT open the exam until you are instructed to do so!

e You must not collaborate with anyone inside or outside of C88C.

¢ You must not use any internet resources to answer the questions.

e If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

e When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

e The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official C88C Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu) | CS88 In Person

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS
e If you need to use the restroom, bring your phone and exam to the front of the room.
e For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.
e Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

e You must include all answers within the boxes.
e Online Exams: You may start your exam as soon as you are given the password.
e You may have a digital version of the C88C Reference Sheet, or the PDF, but no other files.

Exam Clarifications: https://tinyurl.com/clarifications-fa22 Reference Sheet: https://tinyurl.com/mt-reference

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing

Exam generated for CS88 In Person 2

1. (3.0 points) What the HOF?

For each of the following scenarios, select the function that best provides a solution. Assume that the input list is a
sequence of numbers.

(a) (0.5 pt) Return the product of all numbers in a list.
O map
O filter
C) reduce
(O None of these

(b) (0.5 pt) Return a sequence of the squares of all the elements in a list.
O map
Q filter
Q reduce
(O None of these

(c) (0.5 pt) Return a sequence containing only the elements in a list that are greater than 10.
O map
O filter
Q reduce
(O None of these

(d) (0.5 pt) As a reminder, each of map, filter, and reduce takes in a function and a sequence as arguments. For
each of the following, would it make the most sense to use the function as an input to map, filter, or reduce?
All three answers are intended to be distinct (i.e. no two input functions will both correspond to the same list
function).

def f(x):
return len(x) < 5

O map

O filter

O reduce

(O None of these

(e) (0.5 pt)

def g(x, y):
return x +y

O map

O filter

O reduce

(O None of these

Exam generated for CS88 In Person

(f) (0.5 pt)

def h(x):
return x * 3

O map

C) filter

() reduce

(O None of these

Exam generated for CS88 In Person 4

2. (6.0 points) What Would Python Do (WWPD)

For each expression below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. The output may have multiple lines. If an error occurs, write “Error” (if any lines are displayed before the
error, include those in your output). If a function is returned, write “Function”.

(a) (0.5 pt)

>>> 'young' and 'sweet' or 'seventeen'

(b) (0.5 pt)
>>> see = ['see', 'that', 'girl', 'watch', 'that', 'scene'l
>>> see[1:3]

(c) (1.0 pt)

>>> see[6]

(d) (1.0 pt)

>>> digging = lambda x: lambda: 17 + y
>>> digging

(e) (1.0 pt)
>>> digging()

Exam generated for CS88 In Person

(f) (1.0 pt)

def having_the_time_of_your_life(dance, jive):
if dance and jive:
print (True)
if dance > 0 and jive:
print('dance')
elif dance == 17:
print('jive')
else:
print ('QUEEN')
print('queen')

>>> having_the_time_of_your_life(88, False)

Exam generated for CS88 In Person

(g) (1.0 pt)

>>> having_the_time_of_your_life(17, not False)

Exam generated for CS88 In Person

3. (7.0 points) More Abba!

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the code runs
to completion.

Global frame dancing_queen —— func dancing_queen(friday_night, instrument) [parent:]
feel —— func A <line 14> [parent=Global]
ooh
fl: A <line 14> [parent=Global] n-
beat 17
—> [parent=]
f2: dancing_queen [parent=| (b) |]
friday_night | 17
instrument “tambourine’ 1 def dancing_queen(friday_night,instrument):
: () 2 if not friday_night:
Lights : 3 return 'sad'
Lst 4 lights = 0
5 1st = []
Ret Val
eturn Value | 6 while (friday night and lights < 3):
7 if lights % 2 == 1:
£3: [parent=] (&) |] 8 lst.append([instrument[3]] * 2)
9 else:
17
chance |17 10 Ist.append(instrument[1])
Return Value -(f) 11 lights += 1
12 return lambda chance: lights + chance + 68
13
14 feel = lambda beat: beat or beat / 0
15 ooh = dancing_queen(feel(17), 'tambourine')(17)

(a) (1.0 pt) What is the return value of the lambda function in f£1 frame? (box a)
O 17
O Error
O ‘beat’
O beat

(b) (0.0 pt) "IGNORE THIS QUESTION!!
O 17
O Error
O ‘beat’
O beat

(c) (1.0 pt) What is the parent frame of the dancing_queen function? (box b)
O Global
Ofl
O f2
O 13

(d) (1.5 pt) What is the value of 1lights upon returning from the £2 frame? (box c)

Exam generated for CS88 In Person

(e) (1.0 pt) What is the return value of the £2 frame? (box d)
O func lambda <line 12>
O func dancing_queen

Q func lambda <line 14>

(f) (1.0 pt) What is the parent frame of the lambda function in £3? (box e)

(g) (1.5 pt) What is the value of ooh in the global frame when the environment diagram is complete? (box f)

Exam generated for CS88 In Person 9

4. (4.0 points) You Get Bug! And You Get Bug! And You Get A Bug!

In a previous homework, we saw a recursive version of remove_last, which returns a new list identical to the input list
s but with the last element in the sequence that is equal to x removed. Here is the expected behavior:

>>> remove_last (1, [])

[

>>> remove_last(l, [1])

[]

>>> remove_last(1, [1, 11)

[1]

>>> remove_last(1, [2, 1])

[2]

>>> remove_last(1, [3, 1, 2])
[3, 2]

>>> remove_last(l, [3, 1, 2, 1]1)
[3, 1, 2]

>>> remove_last(5, [3, 5, 2, 5, 11])
[3, 5, 2, 11]

Jessica tried to write an iterative version of this function. Here is her code:

def remove_last(x, s):
new_list = []
for elem in s:
if elem != x:
new_list.append(x)
return new_list

Use this code to answer the following questions.
(a) (2.0 pt) Will this code execute the expected behavior?

Explanation: First, we create an empty list new_list. Then in the loop, we add every element in s that is not
equal to x to new_list. At the end, we return new_list, which is now identical to s except without any elements
that are equal to x. This is incorrect because we wanted a list that is identical to s except without the last element
equal to x. For example, the expected output of remove_last(1, [3, 1, 2, 1]) would be [3, 1, 2], but our
code would return [3, 2].

(O Yes, this code correctly removes the last element of s that is equal to x.
(O No, this code is removing only the first element of s that is equal to x.
(O No, this code is removing all elements of s that are equal to x.

(O No, this code is removing elements of s that are not equal to x.

(O No, this code is wrong for a different reason not listed here.

Exam generated for CS88 In Person 10

(b) (2.0 pt) Amit also tried to write an iterative version of this function. Here is his code:

def remove_last(x, s):
new_list = s.copy()

i=20
while i < len(s):
if s[i] == x:
new_list.pop(i)
return new_list
i+=1

Will this code execute the expected behavior?

Explanation: First, we create the new_list by making a copy of s. Now, the original goal was to return a list
that is identical to s except without the last element equal to x. However, this code starts from the beginning of
the list and removes the first element equal to x, and then returns new_list with that first element removed. Here
is a revised version of this code that correctly starts from the end of the list:

def remove_last(x, s):
new_list = s.copy()
i = len(s) - 1
while i >= O:
if s[i] == x:
new_list.pop(i)
return new_list
i-=1

Note: “No, this code is wrong for a different reason” received partial credit. There should also be a second return
new_list statement at the end of the function in the case that there are no elements in s that are equal to x. In
that scenario, we would never reach the return statement inside of the loop because s[i] == x would be False for
all s[i]. Thus, we would need to return new_list at the end.

(O Yes, this code correctly removes the last element of s that is equal to x.
(O No, this code is removing only the first element of s that is equal to x.
(O No, this code is removing all elements of s that are equal to x.

(O No, this code is removing elements of s that are not equal to x.

(O No, this code is wrong for a different reason not listed here.

Exam generated for CS88 In Person 11

5. (4.0 points) Sum Divisible Digits

Complete the function sum_divisible_digits that accepts two integers, num and x. The function returns the sum of
the digits of num that are divisible by x. (Write you solution in the box provided.)

You can assume x will be greater than 0.

def sum_divisible_digits(num, x):
>>> sum_divisible_digits(93731, 3) # 9 + 3 + 3
15
>>> sum_divisible_digits(162, 1) # 1 + 6 + 2
9

return total

(a) (3.0 pt)

(X111

def sum_divisible_digits(num, x):

return total

Exam generated for CS88 In Person 12

6. (6.0 points) Do The n-step Fibonacci

Recall the Fibonacci sequence is a famous sequence of numbers: 0, 1, 1, 2, 3, 5,... We can define the sequenece:
F(n)=F(n—-1)+ F(n—2).

The Fibonacci sequence can be generalized to the n-step Fibonacci sequence, F),. The first n — 1 elements of the sequence
are 0s, and the nth element is 1. The i th element is defined as

Fo(i) = Fo(i—1) + Fo(i —2) + ... + Fu(i — n)

The “original” Fibonacci sequence is the 2-step sequence.

For example, the tribonacci sequence is the 3-step sequence. Its first 3 elements are 0, 0, 1. Its ¢ th element is defined as

fibonacci sequence = 0, 1, 1, 2, 3, 5, 8, 13, ...
tribonacci sequence = 0, 0, 1, 1, 2,4, 7, 13, ...
tetranacci sequence = 0, 0,0, 1, 1, 2, 4, §, ...

Complete the function n_step_fibonacci_maker which takes in a single argument n and returns a function. The
returned function takes in a single argument i and returns the element of the n-step Fibonacci sequence at position i.
You should use recursiobn to complete this function.

def n_step_fibonacci_maker(n):

>>> fib = n_step_fibonacci_maker(2)
>>> for i in range(4):
print(fib(i)) # f£ib(0) = 0, fib(1) =1

N R, P O -

>>> tribonacci = n_step_fibonacci_maker(3)
>>> tribonacci(3) # 0 + 0 + 1
1
>>> tribonacci(4) # 0 + 1 + 1
2
>>> tribonacci(5) # 1 + 1 + 2
4
def n_step_fib(i):
if i < n-1:

Exam generated for CS88 In Person

(a) (6.0 pt)

(XX1

def n_step_fibonacci_maker(n):
def n_step_fib(i):
if i <n - 1:

13

Exam generated for CS88 In Person 14

7. (5.0 points) The Big C’s

Complete the recursive function c¢_helper so that c_galore returns True if phrase contains at least two uppercase
'C' letters and False otherwise. c_helper takes in a string phrase and a boolean has_seen_c that represents whether
a single 'C' has been seen so far.

Note that indexing and slicing works on not only lists but also strings. If a = 'hello' then a[1] evaluates to 'e' and
a[2:4] evaluates to '11'.

def c_galore(phrase):
""" Returns True if the string “phrase” has at least 2 'C' letters and False otherwise.

>>> c_galore('CS 88')

False

>>> c_galore('CS C88')

True

>>> c_galore('C3PC')

True

>>> c_galore('CC: CS C8C88C')
True

return c_helper(phrase, False)

def c_helper(phrase, has_seen_c):
if e _____
return False
if phrase[0] == 'C':
if

else:
return _______ __ __ _ _ _ _ _ o _____

else:
return

(a) (5.0 pt)

(XX1

def c_helper(phrase, has_seen_c):

return False
if phrase[0] == ’C’:

return
else:

return

else:

return

Exam generated for CS88 In Person

8. (13.0 points) Let’s Get Ice Cream

15

You really like ice cream so you decided to open an ice cream store. In order to keep track of inventory and sales, you

decide to write an IceCreamStore and IceCream class.

To start, complete the class IceCreamStore. The IceCreamStore class has four instance attributes:

flavors, a

list containing the flavors you have in stock, scoop_price, the price of a scoop (a float), cone_price, the cost of
an ice cream cone, and revenue (a float)representing how much money the store has made cumulatively. Fill out
the constructor so that self.flavors, self.scoop_price, and self.cone_price store flavors, scoop_price, and

cone_price respectively, and initialize self.revenue with our starting revenue of 0.

class IceCreamStore:
def __init__(self, flavors, scoop_price, cone_price):
nmnn
>>> flavors = ['basil', 'sesame', 'sweet corn']
>>> my_store = IceCreamStore(flavors, 1.5, 0.5)
>>> self.revenue
0

self.flavors = _____________
self.scoop_price =
self.cone_price =

self.revenue =

def make_order(self, flavors, cone):

Implemented in part d

nnn

(a) (2.0 pt)

(XX1

def __init__(self, flavors, scoop_price, cone_price):

self.flavors =

self.scoop_price =

self.cone_price =

self.revenue =

Exam generated for CS88 In Person 16

(b)

(3.0 pt) In order to represent an individual ice cream order, we will write an IceCream class with two instance
variables, scoops, a list containing which flavors are in the order, and scoop_price, which is the price of a single
scoop of ice cream. The constructor is provided for you. Your goal is to write the method, price, which should
calculate the overall price of the ice cream.

class IceCream:
def __init__(self, scoops, scoop_price):

>>> jce_cream = IceCream(['salted caramel', 'sesame'], 1.5)
>>> jce_cream.scoops

['salted caramel', 'sesame']

>>> ice_cream.scoop_price

1.5

nmnn

self.scoops = scoops

self.scoop_price = scoop_price

def price(self):

Returns the price of the ice cream order

>>> ice_cream = IceCream(['mint chip', 'mint chip'], 1.5)
>>> ice_cream.price()
3.0 # 2 scoops multiplied by 1.5

return

Let’s implement the price function. price calculates the price of the ice cream by this formula: the number of
scoops multiplied by the price of a single scoop.

(X111

def price(self):

return

e

(2.0 pt) We also want to be able to sell ice cream in a cone, for a slight upcharge of course! IceCreamCone
inherits from IceCream but now has a new instance variable cone_price which is the cost of the cone. The
constructor has been provided for you, your task is to overwrite price to accomodate the cost of the cone. Select
the implementation that is both correct and avoids redundant code.

class IceCreamCone(IceCream) :
def __init__(self, scoops, scoop_price, cone_price):
super() .__init__(scoops, scoop_price)
self.cone_price = cone_price

def price(self):

>>> jce_cream = IceCreamCone(['chocolate', 'kinako'], 1.5, 0.5)
>>> ice_cream.price()
3.5 # 2 scoops multiplied by 1.5 plus the 0.5 cost of the cone

return _____________
(O super() .price() + cone_price
O super() .price() + self.cone_price
O self.scoop_price * len(self.scoops) + cone_price

QO price() + self.cone_price

Exam generated for CS88 In Person 17

(d) (6.0 pt) Now let’s put it all together! Implement the make_order method of the IceCreamStore class to be able
to represent a customer’s order. make_order takes in two arguments, flavors, a list of the scoops the customer
wants, and cone, a boolean which indicates whether the customer wants their ice cream in a cone.

i. First check that the flavors requested are made by our store, and if so make_order should make a new IceCream
object or an IceCreamCone object if the customer wants a cone.
ii. Then, add the price of the ice cream to revenue.
iii. At the end, return the IceCream or IceCreamCone object, or None if the store doesn’t carry a flavor in the
order.

class IceCreamStore:
def init__(self, flavors, scoop_price, cone_price):

Implementation done in part a
nnn

def make_order(self, flavors, comne):
nun
>>> flavors = ['salted caramel', 'matcha', 'blue moon']
>>> my_store = IceCreamStore(flavors, 1.5, 0.5)
>>> my_store.make_order(['salted caramel', 'salted caramel'], False)
<IceCream Object> # Order was successfully made
>>> my_store.revenue
3.0 # 2 scoops * $1.5
>>> my_store.make_order(['matcha', 'blue moon'], True)
<IceCreamCone Object>
>>> my_store.revenue
6.5 # made $3.5 (2 scoops * $1.5 + $0.5 for cone) and had $3 already
>>> my_store.make_order(['pistachio'], False)
pistachio not in stock # Store doesn't carry pistachio
nnn
for flavor in flavors:
if ____mnot in ______ :
print(flavor + " not in stock")
return

]
n}
Q.
0]
o}
1]
H
(9]
®
Q
a]
g
Q
o)
=]
[0
~

return order

(X111

def make_order(self, flavors, cone):
for flavor in flavors:

if not in

print(flavor + " not in stock")

return _________________ _ _ _ e ____
if
order = IceCreamCone(__)
else
order =

return order

Exam generated for CS88 In Person

9. (8.0 points) Jackson Pollock’s Data Table

18

In this problem, we will be creating basic data table, which will allow you to add, delete and access columns. You may

remember the tables that were used in Data 8 or may have used a table-based program like Excel or google Sheets.

The table will be represented as a 2D array with the first element being a list of column names (like a “header” row).
Subsequent elements will be lists that represent the values in row.

Complete the functions create_table, add_row, delete_row, num_rows, and get_row, to match the behavior in the
doctests. The functions implement our Data Table abstract data type.

Hint: You might want to use list functions append and pop.

def

def

def

def

def

create_table(columns) :
nmnn

>>> t = create_table(['product', 'inventory', 'price'])
>>> t

[['product', 'inventory', 'price']]

>>> add_row(t, ['apple', 4, 2.99])

>>> t

[['product', 'inventory', 'price'l, ['apple', 4, 2.99]1]
>>> num_rows (t)

1

>>> get_row(t, 0)

['apple', 4, 2.99]

>>> delete_row(t, 0)

>>> ¢

[['product', 'inventory', 'price'll
>>> num_rows (t)

0

nmnn

return

add_row(table, row):
nnn
Adds a row to the table.

Assume that the number of entries in the row matches the number of columns in the table
nnn

delete_row(table, index):

nnn

Deletes the row at index (assume that the user always provides a valid index).

The row of column titles does not count in this indexing and the table is zero-indexed.
See doctests for more details

num_rows (table) :

Return the number of rows in the table. Column names do not count as a row
nnn

return

get_row(table, index):

nnn

Return the row at index (assume that the user always provides a valid index).

The row of column titles does not count in this indexing and the table is zero-indexed.
See doctests for more details

return

Exam generated for CS88 In Person 19

(a) (1.0 pt)

33.0px0.75¢¢¢
def create_table(columns):

return

(X13

(b) (1.0 pt)

33.0px0.75¢¢¢
def add_row(table, row):

(X131

(c) (1.0 pt)

33.0px0.75¢¢¢
def delete_row(table, index):

(X11

(d) (1.0 pt)

33.0px0.75¢¢¢
def num_rows(table):

return

(X13

(e) (1.0 pt)

33.0px0.75¢¢¢
def get_row(table, index):

return

(X111

(f) (1.0 pt) The following code returns the second to last row from the table tb. Does it break the abstraction barrier?
x = get_row(tb, len(tb) - 2)
O Breaks Abstraction Barrier

(O Does NOT Break Abstraction Barrier

(g) (1.0 pt) The following code returns the middle row from table tb. Does it break the abstraction barrier?

x = num_rows (tb)
middle = x // 2
r = get_row(tb, middle)

C) Breaks Abstraction Barrier

(O Does NOT Break Abstraction Barrier

(h) (1.0 pt) The following code moves the first row to the bottom of the table tb. Does it break the abstraction
barrier?

first = get_row(tb, 0)
delete_row(tb, 0)
add_row(tb, first)

C) Breaks Abstraction Barrier

(O Does NOT Break Abstraction Barrier

Exam generated for CS88 In Person

No more questions.

20

