
DS C88C Computational Structures in Data Science
Fall 2023 final

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of C88C.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If something
happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets of your
own creation and the official C88C Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Please write your SID at the top of each page!

• You must include all answers within the boxes.

• If you must write outside the box, please draw an arrow.
• Use the blank space as scratch paper to work out your solutions.

https://drive.google.com/file/d/1Q7gX9jnl1USwnlIL7vJAMlTZB7UK8aXU/view?usp=sharing

SID: _____________________ 2

1. (10.0 points) What Would Python Do (WWPD)

For each expression below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. The output may have multiple lines. If an error occurs, write “Error” (if any lines are displayed before the
error, include those in your output). If a function is returned, write “Function”. If the value “None” is returned, write
“None”.

NOTE: Assume each part is executed in order. Previous lines DO impact the current expression. (i.e., part B assumes
part A was executed, as so on.)

f = lambda x, y: 10 - (x + y)
def tricky(f, n):

if n < 10:
n *= 2

y = 15
return lambda x, y: f(x, n) + y

(a) (2.0 pt)

>>> tricky(f, 5)

(b) (2.0 pt)

>>> tricky(f, 5)(3)

(c) (2.0 pt)

>>> tricky(f, 5)(3, 20)

(d) (1.0 pt)

def outer_function():
a = 5
def inner_function():

a = 10
return a

b = inner_function()
print(f"Inner: {b}, Outer: {a}")

outer_function()

Inner: 5, Outer: 10

Inner: 10, Outer: 5

Inner: 10, Outer: 10

The code will result in an error.

SID: _____________________ 3

(e) (1.0 pt) Given a list of numbers, which code snippet uses filter to return a list with all negative numbers
removed? (Note: filter in Python returns an iterator that needs to be converted to a list)

numbers = [4, -1, -3, 2, 0, -5, 8]

filter(lambda x: x < 0, numbers)

filter(lambda x: x > 0, numbers)

list(filter(lambda x: x < 0, numbers))

list(filter(lambda x: x >= 0, numbers))

(f) (1.0 pt)

def square(number):
try:

return number ** 2
except TypeError:

return "hello"

print(square("two"))

It will print "two"

It will print 4

It will print "hello"

It will display a TypeError

(g) (1.0 pt)

def check_even(number):
return "Even" if number % 2 == 0 else "Odd"

numbers = [1, 2, 3, 4]
result = map(check_even, numbers)
print(list(result))

[False, True, False, True]

[Odd, Even, Odd, Even]

[1, 2, 3, 4]

[None, None, None, None]

SID: _____________________ 4

2. (10.0 points) Let’s Explore!

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the code runs
to completion. Boxes with the same label will have the same value.

explore environment diagram

(a) (2.0 pt) What is value of box (a)?

func add_location(new_location) [parent=f1]

func add_location(new_location) [parent=Global]

func explore(places) [parent=f1]

func explore(places) [parent=Global]

["moffitt", "mlk"]

["soda", "moffitt", "mlk"]

(b) (2.0 pt) What is the second element in the list loc, item (b)?

(c) (2.0 pt) What is the parent of lambda function in frame 3, item (c)?

Global

f1

f2

f3

SID: _____________________ 5

(d) (2.0 pt) What is the return value of the lambda function in f3, item (d)?

An arrow pointing to the list loc

["soda", ["moffitt", "mlk"]]

["soda", "moffitt", "mlk"]

["soda"]

None

(e) (2.0 pt) What is value of result and the Return Value of add_location in f2, item (e)?

None

Error

An arrow pointing to the box (a)

An arrow pointing to the list loc

"soda"

SID: _____________________ 6

3. (4.0 points) A Broken Phone...Book

(a) (2.0 pt) Siya lent her phone book to Sanjana. Upon receiving it back, she notices that Sanjana has tampered with
some of the contacts, either adding or deleting digits from their phone numbers.

The phone book after Sanjana has tampered with it looks like this:

phonebook = [{"Oski": 4084170388}, {"Carol": 609627}, {"Michael": 510921913888}]

Siya writes a program that will output a list of all her compromised contacts. A contact is valid if the phone
number is exactly 10 digits long, and is compromised otherwise.

She writes the program code shown below and expects it to output: ans = ["Carol", "Michael"]

Before she runs her code, she asks you to help her debug.

def funky_phonebook(phonebook):
ans = []
for item in phonebook:

for k in item:
if len(str(item[0])) < 10 or len(str(item[0])) > 10:

ans.append(k)
return ans

Select the option which describes the result of this code.

The code errors and will return a key error

The code errors and will return a syntax error

The code is incorrect and will return a list of valid contacts

The code is correct and will return a list of compromised contacts

(b) (2.0 pt) Her mom marvels at her newfound coding abilities and proposes a challenge. She wants Siya to write a
program that will take in a phone book with valid phone numbers and give all the contacts a nickname. For the
purposes of this question, nicknames are the first three letters of a person’s actual name. Assume that all names
are at least 3 letters long.

Note that the phone book is formatted differently from part a. The desired output is as follows:

new_phonebook = {"Varun": 732789744, "Derrick": 510994933, "Oski": 408984443}
>>> nicknames(new_phonebook)
>>> {"Var": 732789744, "Der": 510994933, "Osk": 408984443}

Once again, Siya writes code that she needs your feedback on:

def nicknames(original_dict):
names = {}
for d in original_dict.keys():

x = original_dict.pop(d)
names[d[:2]] = x

return names

How will this code behave?

The code block runs as expected, no changes needed.

The code block errors and does not run.

The code block runs but does not run as expected.

SID: _____________________ 7

4. (6.0 points) Your Mileage May Vary

You’re job is to analyze environmental data about some cars. You’re given a Python list mpgs that contains the mpg
(miles per gallon) of many different cars, and the goal is to calculate the variance of the data set. As this problem
contains many sub-parts, you may assume that any function or variable that is given for you to define is correct when
referenced later on in the problem.

Initially, we have the list mpgs below:

>>> mpgs = [19, 22, 25, 16, 33, 35]

(a) (1.0 pt) Write a function avg that takes a list of numbers as an input and outputs the mean of these numbers.
The mean is defined as the sum of all of the elements of the list divided by the number of elements in the list. You
may use any valid method that fits in the space provided.

>>> mpgs = [1, 2, 3, 4, 5]
>>> mean = avg(mpgs)
>>> mean
3

def avg(lst):

return __

(b) (2.0 pt) Filter the mpgs list, using filter to keep all values greater than or equal to 20.

>>> mpgs = [11, 26, 36, 14, 5]
>>> mpgs = list(filter(______, _____))
>>> mpgs
[26, 36]

mpgs = list(filter(__,

__))

(c) (2.0 pt) Using map, subtract the average of the data set (mean) from each element in the data set and square this
difference. Assign the result to a variable squared_difference.

>>> mpgs = [1, 2, 3, 4, 5]
>>> mean = avg(mpgs)
>>> squared_difference = list(map(_____, _____))
>>> squared_difference[0] # (1 - 3) = 2, 2 * 2 = 4
4
>>> squared_difference
[4, 1, 0, 1, 4]

squared_difference = list(map(___,

__))

(d) (1.0 pt) Finally, find the mean (average) of the squared_difference list, assigning it to variance.

variance = ___

SID: _____________________ 8

5. (10.0 points) CineDict

(a) (2.0 pt) Complete create_movie which creates a new movie dictionary from title, director, and release year.

>>> create_movie("Inception", "Christopher Nolan", 2010)
{'title': 'Inception', 'director': 'Christopher Nolan', 'release_year': 2010}

def create_movie(title, director, year):

return __

(b) (5.0 pt) Update the movie catalog with the new movie dictionary. If the director does not exist in the catalog,
add them.

def add_movie_to_catalog(movie_catalog, movie):
"""
>>> movie_catalog = {}
>>> inception = create_movie("Inception", "Christopher Nolan", 2010)
>>> add_movie_to_catalog(movie_catalog, inception)
{'Christopher Nolan': [{'title': 'Inception',

'director': 'Christopher Nolan',
'release_year': 2010}]}

"""

def add_movie_to_catalog(movie_catalog, movie):

director = movie[_____________________________]

if _____________________________ not in ____________________________:

movie_catalog[____________________________] = [movie]
else:

movie_catalog[director].append(_____________________________)
return movie_catalog

(c) (3.0 pt) Retrieve a list of all movies by a given director.

Hint: dict.get(key, value) returns dict[key] if key exists, otherwise returns value.

def get_movies_by_director(movie_catalog, director):
"""
Retrieves a list of all movie dictionaries by a given director from the movie_catalog.
>>> movie_catalog = {'Christopher Nolan': [{'title': 'Inception',

'director': 'Christopher Nolan',
'release_year': 2010 }]}

>>> get_movies_by_director(movie_catalog, "Christopher Nolan")
[{'title': 'Inception', 'director': 'Christopher Nolan', 'release_year': 2010}]
>>> get_movies_by_director(movie_catalog, "Quentin Tarantino")
[]
"""

def get_movies_by_director(movie_catalog, director):

return ____________________________________.get(

_________________________________, __________________________________)

SID: _____________________ 9

6. (10.0 points) Composing Trees with Trees

In this question, you will manipulate a Tree which contains a function, in addtion to the value for each node.

A compound function, h(x), is the composition of two functions, f(x) and g(x). Suppose we have two functions:
f(x) = x + 2 and g(x) = 3 * x.

Thus the compound function h is h(x) = f(g(x)) is (3 ⇤ x) + 2

We have added an instance attribute to the Tree class, fn, which is a function. This function takes in only one integer
as an argument and returns an integer. Here is the implementation of the Tree class with this new fn attribute. You
may assume that no other changes were made from the Tree class you’ve used in CS88.

class Tree:
def __init__(self, value, fn, branches=()):

self.value = value
self.fn = fn # NEW!
for branch in branches:

assert isinstance(branch, Tree)
self.branches = list(branches)

def is_leaf(self):
return not self.branches

Complete the function, compound, that composes functions each function at every intermediate node, with their parent
node’s function, and applies the compound function to the value field of the tree’s leaf node, modifying each leaf node
in place. It is important to note that every leaf node’s function will be lambda x: x i.e., the output is equal to the
input. You may modify the tree.fn and tree.value attributes for any node in the argument tree that is passed into
compound. Only the value field of the leaf node will be checked for accuracy. (In a Tree, remember that each node has
only one parent node.)

Step 0

SID: _____________________ 10

Step 1

Step 2

Step 3

SID: _____________________ 11

For example, if one tree traversal (from the root node to the leaf node) is (lambda x: 3 * x) -> (lambda x: x + 2)
-> 4. The compound function is (lambda x: 3*x + 2). This compound function is then applied to the value field of
the leaf node: 4, giving us a final value of 14.

Referencing the code and examples above, implement the compound function below.

Hint: The child’s function is the outer function (f), and the parent function is the inner function (g) of the composition.

def compound(tree):
if _____(a)_____:

tree.value = ____(b)____
else:

g = tree.fn
for branch in ____(c)____:

f = ____(d)____
h = lambda x: ____(e)____
branch.fn = h
compound(branch)

(a) (2.0 pt) Fill in blank (a).

(b) (2.0 pt) Fill in blank (b).

(c) (2.0 pt) Fill in blank (c).

(d) (2.0 pt) Fill in blank (d).

(e) (2.0 pt) Fill in blank (e).

SID: _____________________ 12

7. (8.0 points) Shopping List 2

You are going to buy groceries at the store (again). This time, you used the aggregate_price function you wrote for
midterm 1 and have a shopping list that is a dictionary of the following format:

{"itemname 1": totalprice 1, "itemname 2": totalprice 2, "itemname 3": totalprice 3}

where "itemname" is a string that refers to the name of the item and totalprice is an int that refers to the total price
of that item.

You want to store these results in a linked list. Define a function that takes in a dictionary of the aforementioned format
and returns a linked list. The value of each node should be a 2-node linked list where the first node stores the item’s
name and the second node stores the aggregated price for the item. For example:

Linked Lists Question Diagram

node refers to each node (link) of the main linked list.

def lnk_aggregate(d):
"""
>>> shopping_dict = {"apple": 45, "banana": 28, "milk": 3, "carrots": 15}
>>> res = link_aggregate(shopping_dict)
>>> res
Link(Link("apple", Link(45)),

Link(Link("banana", Link(28)),
Link(Link("milk", Link(3)),

Link(Link("carrots", Link(15)))
)

)
)
"""
agg_lnk = None
curr_lnk = None
for item_name, total_price in d.items():

node_lnk = __
if agg_lnk == None:

agg_lnk = ___
curr_lnk = __

else:

return agg_lnk

SID: _____________________ 13

(a) (8.0 pt) Complete the function defintion. You may assume that the dictionary, d, passed in will be of the specified
format.

def lnk_aggregate(d):
agg_lnk = None
curr_lnk = None
for item_name, total_price in d.items():

node_lnk = __
if agg_lnk == None:

agg_lnk = ___

curr_lnk = __
else:

return agg_lnk

SID: _____________________ 14

8. (14.0 points) Mario Kart

Mario Kart is a popular racing video game. Let’s implement some classes to make the game work. First, write a Vehicle
class. To start you off, we have provided you with the __init__ method:

class Vehicle:
def __init__(self, speed, acceleration, weight):

self.speed = speed
self.acceleration = acceleration
self.weight = weight

self.items = []

More methods to be implemented below

(a) (2.0 pt) Over the course of a race, vehicles can pick up items and throw them to slow down their opponents.

First, write a Vehicle method called pick_up_item, which has 2 arguments: item_name (a string) and item_weight
(an integer). When a driver picks up an item, the weight of their vehicle increases by item_weight and the
item_name gets added to the Vehicle’s list of items.

def pick_up_item(self, item_name, item_weight):
"""
>>> v = Vehicle(10, 10, 15)
>>> v.pick_up_item('red shell', 1)
>>> v.weight
16
>>> v.items
['red shell']
>>> v.pick_up_item('banana', 2)
>>> v.weight
18
>>> v.items
['red shell', 'banana']
"""
___(a)___
___(b)___

What should go in blank (a)?

self.items.append(item_weight)

self.items.append(self.weight)

self.speed += item_weight

self.acceleration += item_weight

self.weight += item_weight

(b) (2.0 pt) What should go in blank (b)?

self.items.append(item_name)

self.items.append(item_weight)

self.items += item_name

self.weight += item_name

self.items += [item_weight]

SID: _____________________ 15

(c) (2.0 pt) Next, implement the use_item method which takes in a list of Vehicle objects. The order of the list
represents the positions of each vehicle in the race. For example, the vehicle at index 0 is behind the vehicle at
index 1.

When use_item is called, the item at the end of the items list of the vehicle is removed. Additionally, the vehicle
in front of the current vehicle has its speed reduced by 1.

You may assume the Vehicle that calls use_item will always be in the vehicles list, have at least 1 item, and
have another Vehicle in front of it. Additionally, assume the speed of a Vehicle after being hit by an item will
remain positive.

def use_item(self, vehicles):
"""
>>> second_place = Vehicle(5, 5, 5)
>>> first_place = Vehicle(10, 10, 10)
>>> vehicles = [second_place, first_place]
>>> second_place.pick_up_item('green shell', 1)
>>> second_place.items
['green shell']
>>> second_place.use_item(vehicles)
>>> second_place.items
[]
>>> first_place.speed
9
"""
self.items.pop()
for i in range(len(vehicles)):

if ___(c)___:
curr_location = i
break

next_location = curr_location + 1
if next_location < len(vehicles):

next_vehicle = ___(d)___
___(e)___

What should fill in blank (c)?

(d) (2.0 pt) What should fill in blank (d)?

(e) (2.0 pt) What should fill in blank (e)?

SID: _____________________ 16

(f) (4.0 pt) In Mario Kart 8, there are different types of vehicles. To represent this in code, we have the Bike class,
which is identical to the Vehicle class except it overrides the pick_up_item method.

When a Bike picks up an item, its acceleration is decreased by half the weight of the item it picks up. Additionally,
the Bike’s weight and items attributes are modified just like in the original pick_up_item method. Implement
this below.

class Bike(Vehicle):
def pick_up_item(self, item_name, item_weight):

"""
»> b = Bike(10, 10, 10)
»> b.pick_up_item(’blue shell’, 4)
»> b.weight
14
»> b.items
[’blue shell’]
»> b.acceleration
8.0
"""

SID: _____________________ 17

9. (10.0 points) Generate Factors

We are writing a program that will continuously generate the factors of our input. A factor of a number divides the
given number evenly or exactly.

(a) (8.0 pt) Implement the generator function generate_factors. The input k is a positive integer. It continuously
yields the next factor of k from smallest to largest. If all of the factors are used, then the generator will yield again
from the first (smallest) factor.

def generate_factors(k):
"""
»> gen = generate_factors(4)
»> next(gen)
1
»> next(gen)
2
»> next(gen)
4
»> next(gen)
1
»> next(gen)
2
»> next(gen)
4
»> next(gen)
1
"""

i = ___

___:

if i ______________ k:

i = __

elif ____________ % ______________ == ________________:

__

i += ___

(b) (2.0 pt) What would the output be if we called list(generate_factors(10))? Please note that we are using
list and not next.

RecursionError: maximum recursion depth exceeded error.

StopIteration error.

[1, 2, 5, 10]

[1, 2, 5, 10, 1, 2, ...]

An infinite loop

SID: _____________________ 18

10. (4.0 points) May I take your order?

Recall, orders of growth allow us describe the efficency of a function, by explaining how much longer a function takes to
run as its input size grows. In order from “fastest” to “slowest”, they are:

• O(1) — Constant time
• O(log(n)) — Logarithmic time
• O(n) — Linear time
• O(n2) — Quadratic (or Polynomial) time
• O(2n) — Exponential time

Consider the following functions. Each is pretty short and accomplishes the same task.

def sum_nums_A(n):
"""
>>> sum_nums_A(10)
55
"""
result = 0
for i in range(n):

for j in range(0, i + 1):
result = result + 1

return result

def sum_nums_B(n):
"""
>>> sum_nums_B(10)
55
"""
return (n ** 2 + n) // 2

def sum_nums_C(n):
"""
>>> sum_nums_C(10)
55
"""
if n < 2:

return n
return n + sum_nums_C(n - 1)

(a) (1.0 pt) What is the order of growth of sum_nums_A?

O(1)

O(log(n))

O(n)

O(n2)

O(2n)

(b) (1.0 pt) sum_nums_A will perform faster than sum_nums_B for large inputs

True

False

(c) (1.0 pt) sum_nums_B will perform faster than sum_nums_C for large inputs

True

False

(d) (1.0 pt) sum_nums_C will perform faster than sum_nums_A for large inputs

True

False

SID: _____________________ 19

11. (14.0 points) NBA Networking

The female-identifying members on Data C88C staff are having a Girl’s Night by networking with some NBA players
interested in dabbling in data science after retirement from the league. They are trying to plan a hangout but don’t
know much about each other so everyone invited was asked to fill out “About Me” forms. Below are the two tables
showcasing their responses: staff for course staff members, players for NBA players.

Tabble Name: staff

name number frequent_word food_order fav_player

Rebecca 88 bruh rice Kawhi Leonard
Jessica 64 slay rice Lebron James
Miha 21 slay chicken Kawhi Leonard
Christy 30 bruh soup Stephen Curry
Morgan 22 slay beef Luka Doncic
Ramya 8 bruh tofu Stephen Curry
Lily 21 slay chicken Lebron James
Angela 39 bruh rice Kevin Durant
Michelle 54 slay chicken Luka Doncic
Ananyaa 3 slay tofu Kawhi Leonard

Table Name: players

name team juice food_order

Stephen Curry Warriors apple soup
Lebron James Lakers orange chicken
Kevin Durant Suns grape beef
Kawhi Leonard Clippers apple tofu
Luka Doncic Mavericks guava chicken

(a) (4.0 pt) Write a query that selects the names of staff members whose favorite number is greater than 23 grouped
by their food order in alphabetical order (ascending). Running this query should return a table that looks like:

name

Michelle
Rebecca
Jessica
Angela
Christy

SELECT __

FROM __

WHERE ___

GROUP BY __

ORDER BY ___;

SID: _____________________ 20

(b) (3.0 pt) Write a query that outputs the staff member’s name and their favorite player’s name fav_player where
they have the same food order. The rows should be ordered by the staff members’ names in alphabetical order
(ascending). Running this query should return a table that looks like:

name fav_player

Ananyaa Kawhi Leonard
Christy Stephen Curry
Lily Lebron James
Michelle Luka Doncic

SELECT __

FROM __

ORDER BY ___;

(c) (3.0 pt) Write a query that outputs the name and food_order of all staff members whose favorite player prefers
apple juice. Running this query should return a table that looks like:

name food_order

Rebecca rice
Miha chicken
Christy soup
Ramya tofu
Ananyaa tofu

SELECT __

FROM __

WHERE ___

__;

SID: _____________________ 21

(d) (4.0 pt) We want to find out what teams are most popular among C88C staff. Write a query that outputs the
team and the total number of staff members as total_staff whose favorite player is on each team. The rows
should be ordered by the values in total_staff numerically descending. Running this query should return a table
that looks like:

team total_staff

Clippers 3
Lakers 2
Mavericks 2
Warriors 2
Suns 1

SELECT __

FROM __

WHERE ___

GROUP BY __

ORDER BY ___;

SID: _____________________ 22

12. (0.0 points) Bonus Questions!

(a) (1.0 pt) This is extra credit. Do not attempt it until you are done! Suggest a name for the CS88 Ant!
(Any reasonable name counts for credit. :))

(b) (1.0 pt) Consider the following fibonnaci function to answer the following two questions:

fib_results = { 0: 0, 1: 1 }
def fib(n):

"""
>>> 5 in fib_results
False
>>> fib(5)
5
>>> 5 in fib_results
True
"""
if n in fib_results:

return fib_results[n]
if n < 2:

return n
result = fib(n - 1) + fib(n - 2)
fib_results[n] = result
return result

This questions is extra credit. Do not attempt it until you are done! What is the order of growth of fib?

(c) (2.0 pt) This is extra credit. Do not attempt it until you are done! Draw the function calls for fib(5) as
a tree. e.g. fib(5) should be the root node. Some inputs will be left empty.

