CS 88 Computational Structures in Data Science
Spring 2016 PRACTICE FINAL SOLUTIONS

INSTRUCTIONS

e You have 3 hours to complete the exam.

e The exam is closed book, closed notes, closed computer, closed calculator, except one 8.5” x 11”7 crib sheet (2
sided) of your own creation and the official CS 88 final study guide.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

BearFacts email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

http://berkeley.edu

1. (12 points) Draw a line in the sand

Each of the functions below contain a docstring and a bunch of lines of code. Among of them are at least one
sequence of lines that correctly implement the function. You are to cross out, i.e., remove, lines that are not
needed in a correct implementation. The remaining lines should implement the function with no extraneous
lines.

(a) (3 pt) Iteration.

def min(s):
"'"Return minimum of s.

>>> min([0, -2, 3])
-2
min_s = s[0]
for e in s[1:]:
if e < min_s:
min_s = e
return min_s

def min(s):
"""Return minimum of s.

>>> min ([0, -2, 3])
-2
min_s = s[0]
for e in range(1l, len(s)):
if s[e] < min_s:
min_s = sl[el
return min_s

(b) (3 pt) Count characters with recursion

def count_chars(ch, str):
"""Count the number of times charact ch appears in str

>>> count_chars(’a’, ’aardvark’)
3
nmnn
if not str:
return O
else:
match = 1 if str[0] == ch else O
return match + count_chars(ch, str[1:])

def count_chars(ch, str):
"""Count the number of times charact ch appears in str

>>> count_chars(’a’, ’aardvark’)
3

if len(str) == O0:

Name:

return O

else:
if str[0] == ch:
return 1 + count_chars(ch, str[1:])
if str[0] != ch:

return count_chars(ch, str[1:])

(c) (3 pt) Higher order functions

def summer (fun):
"""Return a function that sums function fun applied to elements of a seq.

>>> summer (lambda x: x+x)([1, 2, 31)
12
def runsum(x):

psum = O

for e in x:

psum += fun(e)

return psum

return runsum

(d) (3 pt) Class class

class Course:
"""Course enrollments.

>>> ¢ = Course("cs88")
>>> c.name
’cs88’

>>> c¢.add_student ("David")
>>> c.add_student ("Cathy")
>>> 1list(c.students)

[’David’, ’Cathy’]

nmnn

courses = []

def __init__(self, course_name):
self .name = course_name
self.students = []

Course.courses.append (self)

def add_student (self, student_name):
if student_name not in self.students:
self.students.append (student_name)

def students(self):
for student in self.students:
yield (student)

Name: 5

2. (11 points) Rubber baby buggy bumpers

Each problem contains a bug that will cause the function to fail, throw an exception, or hang on certain input.
Identify the bug, produce a sample input that exhibits the bug.

Here is an example.

def fib(n):
if n == 0:
return 1
else:

return fib(n-1) + fib(n-2)

Bug: Goes into an infinite loop if passed a negative value because base test should be if n <= 1:.

Error input: £ib(1).

(a) (3 pt) Bug in iteration over a dictionary

def key_of_min_value(d):
"""Return the key associated with the minimum value. """
min_value = 0
min_key = 0
for key in 4d:
if d[key] < min_value:

min_value = dl[key]

min_key = key
return min_key

min_value cannot be initialized to 0. It must be some value in d or treated specially as ininitialized.

Give it a dictionary with all values greater than 0.

(b) (3 pt) Bug in sorting

def quicksort(s):
"""Return a sorted copy of sequence s using quicksort. """
if s == []:
return s
pivot = s[0]
smaller = []
larger = []
for x in s([1:]:
if x < pivot:
smaller += [x]
if x > pivot:

larger += [x]
return quicksort(smaller) + [pivot] + quicksort(larger)

All elements equal to the pivot are discarded.
quicksort([3, 2, 2, 4, 5, 1]1) => [1, 2, 3, 4, 5]
(c) (2 pt) Bug fun

def make_adder(a):
"""Return a function that adds a to its argument."""
def adder(b):
return a + b
return adder (a)

Need to return adder, not adder (a)
make_adder(4) => 8
(d) (3 pt) Spot the abstraction violation.
The following provides an implementation of an abstract data type of a tree in which each node contains

a value and zero or more sub-trees as its branches. It contains a bug and an abstraction barrier violation.
Identify both and fix them by marking up the code.

def tree(value, branches=[]):

return {1: value, 2: branches}

def value(t):
return t[1]

Name:

def branches(t):
return t[2]

def is_heap(t):
A heap is a tree where every value is larger than or equal to
the value of its parent. The root of a heap is the smallest value
in the tree.
val = t[1]
for b in branches(t):
if b < val or !is_heap(b):
return False
return True

Violation:

Correction:

Bug: final line is indented too far.
Violation: val = t[1] should be val = value(t)

3. (7 points) Class of dogs - WWPP

Consider the following class defintion

class Dog:
count = 0

def __init__(self, name):
Dog.count += 1
self .name = name
self.sticks_fetched = 0

def speak(self):

print (¢ ‘Bark! My name is ‘¢

+ self.name + “°¢.77)

def fetch(self):
print (““0K!’?)
self.sticks_fetched += 1

class Puppy (Dog):

def init__(self, name):

Dog.__init__(self, name)

def fetch(self):
print (self .name + ‘¢ can’t fetch!’’)

clifford = Dog(‘‘Clifford’’)
fido = Puppy(¢‘Fido’’)

For each of following, fill in what would Python print.

>>> Dog.count

Bark! My name is Clifford.

>>> fido.speak ()

Bark! My name is Fido.

>>> clifford.fetch()

Name:

OK!

>>> fido.fetch()

Fido can’t fetch!

>>> Dog.fetch(fido)

OK!

>>> fido.sticks_fetched

10

4. (8 points) SQL sequel

The questions below refer to the following tables.

Courses

| course_id | course_name | sem |

| 1 | ChemiA | Fall 2015 |

| 2 | AstroC10 | Fall 2015 I

| 3 | Cs8s | Spring 2016 |

| 4 | Mathi1B | Spring 2016 |
Grades

student_id	student_name	«c_id	grade
1	Lucy Jones	2	95
2	John Doe	3	97
3	Jimmy Smith	4	77
4	Carol White	3	88
3	Jimmy Smith	1	85
[1	Lucy Jones	4	90
2	John Doe	1	75

(a)

(b)

(2 pt) What would the query return? Write down all output values and column names.

SELECT course_name
FROM Courses;

course_name
Cheml1A
AstroC10
CS88
Math1B

(3 pt) What would the following query return? Write down all output values and column names.

SELECT course_name, student_name, grade
FROM Courses, Students

WHERE course_id = c_id

AND course_name = cs8s s

Name: 11

course_name student_name grade
CS88 Jimmy Smith 77
CS88 Lucy Jones 90

(c) (3 pt) Fill in the blanks below for the SQL query that returns course name and number of students in each
course.

SELECT

GROUP BY

ORDER BY course_name;

SELECT <course_name, count (*)

FROM Grades, Courses

WHERE Grades.c_id = Courses.course_id
GROUP BY Grades.c_id

ORDER BY course_name ;

12

5. (10 points) Heard you like iterators

Implement an iterator class called IteratorsIteratorThe __init__ method for IteratorsIterator takes
in a sequence of iterables and constrators an iterator that will iterate over each of these iterables, i.e., stitch
them all together into one iterable. An IteratorsIterator instance represents a sequence of the values in the

iterables.

class IteratorsIterator:
>>> list(IteratorsIterator ([[1, 3, 5], [2, 4, 6], [88], [1, [88] 1))
[1, 3, 5, 2, 4, 6, 88, 88]

>>> lotso_iterables = [[1, 2], [’h’, ’i°], [’c’, ’s?’, 8, ’8°]]
>>> s = IteratorsIterator(lotso_iterables)

>>> next(s)

1

>>> next (s)

2

>>> 1list (s)

[Jh),)i’, ’C’, JS)’ 8’)87]

def init__(self, iterables):

self.iterators = [iter(iterable) for iterable in iterables]

def __iter__(self):
return self

def __next__(self):
if not self.iterators:
raise Stoplteration
try:
return next(self.iterators[0])
except Stoplteration:
self.iterators = self.iterators[1:]
return next(self)

Name:

6. (12 points) Data Science Tables

13

In data8 you have use the Table abstraction in a zillion different ways. In cs88, you have learned enough to
build Tables yourself. It is an example of a container class. Below is a skeleton implementation of a subset of
tables using the ADT design pattern. Just like the Tables you have used in data8, it is an ordered collection
of named columns. All columns must be the same length. But a column is a sequence, rather than an numpy
array. The internal representation is a dictionary with the column name as the key in each item and the data
sequence being the value associated with that key. We have used collections.OrderedDict, rather than dict
because it keeps the items ordered according to how they were inserted. (You can ignore this and just think of
it as a dictionary; it does not change any line of code.)

Your job is to fill in the blanks for the incomplete methods. You will want to refer to the doctest for detail on
method behavior.

from reduce_soln import *
import collections

class Table88:
"""Data science tables an ordered collection of named columns.

>>>
>>>
[1,
>>>
2
>>>
3
>>>

[’a’,

>>>
>>>

3
>>>

[r1,
>>>
[4,
>>>
[’f’

def

def

def

def

def

def

x = Table88().with_columns([(’a’, [1,

x[’a’]
2, 3]
len(x)

x.num_rows ()

list(x.labels ())

7b’]

x[’c’] = [zf;’ ;g;, 'h]
len(x)

list(x.rows ())

4, °f°]1, [2, 5, ’g’], [3, 6, ’h’]]
x.summary () [’b’]

5.0, 6, 15]

x.summary () [’ c’]

s)NA)’)h),)NA)]

__init__(self):

2, 3,

self._columns = collections.OrderedDict ()

self._num_rows = 0

num_rows (self):
return self._num_rows

labels (self):
return self._columns.keys ()

columns (self):
return self._columns.values ()

__len__(self):
return len(self._columns)

__setitem__(self, column_label, column_data):

(’b’,

4,

5,

61)1)

"""Special method to add or set a column to a data vector using indexing."""

if not isinstance(column_data, collections.Iterable) or isinstance(column_dat
raise ValueError (’Column data must be list’)
if not self._columns
self._columns[column_label] = column_data
self._num_rows = len(column_data)
else:
if len(column_data) !'= self.num_rows ():
raise ValueError (’Column length mismatch?’)
self._columns[column_label] = column_data
return self

def __getitem__(self, column_label):
return self._columns[column_labell]

def with_columns(self, columns):
new_table = Table88 ()
for (column_label, column_data) in columns:
new_table[column_label] = column_data
return new_table

def apply(self, fun, column_label):
return map(fun, self[column_labell])

def select(self, column_labels):
return Table88().with_columns ([(label, self[label]) for label in column_label

def where(self, row_selector):
return Table88().with_columns ([(label, [self[label][i] for i in range(self.nu
for label in self.labels()])

def row(self, index):
return [self[label][index] for label in self.labels ()]

def row_as_dict(self, index):
return {label:self[label][index] for label in self.labels ()}

def rows(self):
for i in range(self.num_rows ()):
yield self.row(i)

def summary(self, stats = [min, mean, max, sum]):
"""Return a table consisting of summary statistics on each
column of a table with a row for each stats reducer function.
Where the stats function is invalid, the summary value is ’NA’

def wrap(fun, seq):
try:
return fun(seq)
except:
return "NA"
stat_table = Table88()

Name:

def

stat_table[’stats’] = [stat.__name__ for stat in
for label in self.labels():

stat_table[label] = [wrap(stat, self[label])
return stat_table

repr__(self):

lines = "Table88:\n"
if self._columns
lines += "| " + " |" join(self.labels()) + "
for i in range(self.num_rows ()):
lines += "\n| "

for label in self.labels ()
lines += str(self[label]l[i]) + " "
return lines

stats]

for stat in stats]

15

