CS 88 Computational Structures in Data Science

Spring 2019 FINAL

INSTRUCTIONS

e You have 3 hours to complete the exam. Put your name and SID on every page.

e The exam is closed book; no resources are allowed except two 8.5”7 x 11”7 cheat sheets and the official CS 88
final reference sheet (attached to the back of the exam). Remove the reference sheet before turning in exam.

e Mark your answers on the exam itself. We will not grade answers written on scratch paper. Check that you
have 8 double-sided pages (including cover page) for 7 problems.

Last name

First name

Student ID number

Berkeley email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

e You may use built-in Python functions that do not require import, such as min, max, pow, and abs. You may
not use functions defined on your study guide unless clearly specified in the question.

e For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.
Your solution must fit within the number of lines provided, but may not require all of the lines.

e Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu

[This page is purposely left blank. Use it as scratch space.]

Name and SID:

1. Evaluators Gonna Evaluate

For each of the expressions in the table below, write the output displayed by the interactive Python
interpreter when the expression is evaluated. The output may have multiple lines. If an error
occurs, write “Error”. If a function is outputted, write “function”. Your answers must fit within

the boxes provided. Work outside the boxes will not be graded.

Hint: No answer requires more than 6 lines. The first two rows have been provided as examples.
Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless

it is None. Assume that you have started python3 and executed the following statements:

def anGenerator():

X =0

while True:
yield x
X += 1

class GenIterator:

def __1init__(self):

anGenerator ()

return next(self.current)

self.current
def __next__(self):
def __tdter__(self):

return self

class Flower:
petals = True

def
self.colour =

def color(self):

__init__(self, colour):

colour

print(“I’m colorful!”)

class Tulip(Flower):
season = “spring”

def

color(self):
print(self.colour)

class Daffodil(Flower):

def

def

def

def

__init__(self, colour):
self.colour = colour
self.height = 0

color(self):
print(self.colour)

grow(self, -dnches):
self.height += 1dnches

season(self):

print("Season pushed back")

Expression

Interactive Output

Flower.petals

True

Rose ()

Error

tulip = Tulip(“red”)
tulip.color()

Name and SID:

daffodil = Daffodil(“yellow”)
daffodil.color ()

Flower.color (daffodil)

daffodil.petals

tulip.season = “early spring”
print(Tulip.season, tulip.season)

tule = Tulip(“purple”)
tule.season

tulip = Tulip(“blue”)
Tulip.color(daffodil)
tulip.color(daffodil)

tulip.height = 100
Daffodil.grow(tulip, 200)
Tulip.height

a = GenIterator()
for i in range(l, 6):
print(next(a))

for i in range(3):
print(next(a))

next(GenIterator())

Name and SID:

2. Some Tech Fame

Fill in the environment diagram that results from executing the
code below until the entire program is finished, an error occurs, or
all frames are filled. You may not need to use all of the spaces or
frames.

There are 20 blanks total you need to fill out!

A complete answer will:

. Add all missing names and parent annotations to all local frames.

. Draw any necessary arrows to function names.
. Add all missing values created or referenced during execution.
. Show the return value for each local frame.

Global Frame
S0 |

te |

ch |

fa |

me |

f1: so [parent = Globall]

me |

fa |

Return Value |

f2: fa [parent =]

me |

SO |

Return Value |

f3: [parent = 1

Return Value l

so =5
te =6
chi= [2, 4]

def so(me):
me = 8

def fa(me, so):
so.append (me)

return me + 1
return fa

def fa(me, so):
return [me] + so

te = so(te)(te, ch)
me fa
me([‘c', 'h'], ch)

Inn

func so(me) [parent = Globall

func fa(me, so) [parent = Globall

func fa(me, so) [parent

Name and SID: 4

3. Warriors in 6

Answer the following SQL questions given tables Players and Stats of the following form:

Table: Players

name | team | college | age
DeMarcus Cousins | Golden State Kentucky 28
Kevin Durant Golden State Texas 30

| | |

| | |
James Harden | Houston | Arizona | 29

| | |

| | |

Kawhi Leonard Toronto San Diego 27

Oski Bear Memphis California 22
Table: Stats

name | minutes | points | rebounds | assists
DeMarcus Cousins | © | © | © | ©

Kevin Durant | 28 | 35 | 5 | 3

James Harden | 33 | 35 | 4 | 6

Kawhi Leonard | 15 | 18 | 10 | 10

Oski Bear | 24 | 101 | 39 | 31

A. What is the output of the following SQL query. Not all boxes will be necessary.

SELECT name, rebounds+assists, points FROM Stats WHERE points > minutes
ORDER BY points, name

Name and SID: 5

B. Write a SQL query that retrieves the name of all players who had more rebounds than assists.

C. Write a SQL query that retrieves the name and their points per minute for all players who
played at least 1 minute.

D. Write a SQL query that retrieves the name, college, and points of all players. Note: your query
output should NOT repeat any rows.

E. Write a SQL query that retrieves all unique pairs of player names if the sum of the 2 players’
points is greater than 60. Order the pair of names in each row by alphabetical order, and order the
rows in alphabetical order by the first player in the pair. Here is the expected output:

DeMarcus Cousins Oski Bear
James Harden Kevin Durant
James Harden Oski Bear
Kawhi Leonard Oski Bear
Kevin Durant Oski Bear

Name and SID: 6

4. Find the Mayor

In a city of N people, represented by integers 1 to N, you are tasked in finding which person out of
all of them is the mayor. Only one person can be mayor. You are given pairs, a list of 2-element
lists in the form of [a,b]. Each pair [a, b] denotes that person a trusts person b.

The mayor has two important properties:
1. The mayor is trusted by all of the other people.
2. The mayor trusts no one.

Complete the main function and helper functions below to return the integer that represents the
mayor, or -1 if the mayor does not exist. You can assume pairs is not an empty list and N > 1.

A. First, complete the createTrusted helper function.
def createTrusted(pairs):
"M Returns a dictionary mapping a person to a list of people who
trust them. The order of the 1list of people does not matter.
>>> createTrusted([[1,3], [2,3], [3,1]1]1)
{3: [1, 2], 1: [3]}

>>> createTrusted([[1,3], [1,4], [2,3], [2,4], [4,3]])
{3: [1, 2, 4], 4: [1, 2]}

trusted = {}

return trusted

Name and SID: 7

B. Next, complete the createTrusts helper function.
def createTrusts(pairs):
""" Returns a dictionary mapping a person to a list of people they
trust. The order of the list of people does not matter.
>>> createTrusts([[1,3], [2,3], [3,1]])
{1: [3], 2: [3], 3: [1]}

>>> createTrusts([[1,3], [1,4], [2,3], [2,4], [4,3]1])
{1: [3, 41, 2: [3, 4], 4: [3]}

trusts = {}

return trusts

Name and SID: 8

C. Finally, complete the findMayor function to solve our original problem. You may use
createTrusted and createTrusts from above and can assume they work properly.

def findMayor(N, pairs):
""" Return the integer representing the mayor with the properties:
1. The mayor 1is trusted by all of the other people.
2. The mayor trusts no one.
Return -1 if no such mayor exists.

>>> findMayor (2, [[1,2]])

2 # 1 trusts 2, 2 doesn’t trust anyone, so 2 is the mayor
>>> findMayor (3, [[1,3], [2,3]1])

3 # everyone trusts 3, but 3 trusts no one, so 3 s mayor
>>> findMayor (3, [[1,3], [2,3], [3,1]])

-1 # everyone trusts 3, but 3 trusts 1, so not mayor

>>> findMayor (3, [[1,2], [2,3]1])

-1 # No one 1is trusted by everyone, so no mayor

>>> f'indMayor(4, [[1)3]3 [174]; [2;3]) [2)4]3 [433]])

3 # everyone trusts 3, but 3 trusts no one, so 3 s mayor
nnn

trusted

return -1

Name and SID: 9

5. Perfect Numbers

A perfect number is a positive integer that is equal to the sum of its proper positive divisors, that is,
the sum of its positive divisors excluding the number itself.

A. First, write a function that returns the list of all proper divisors of a number n. A proper divisor
of n is a positive integer that evenly divides n and is not equal to n. Assume n is a positive integer
and we only want divisors that are also positive integers.

Definition: x is a divisor of n if n % x == 0
Definition: x is a proper divisor of n if x is a divisor of n and x !=n

def get_proper_divisors(n):

>>> get_proper_divisors(1l)

[] # 1 is the only divisor of 1, but is not a proper divisor
>>> get_proper_divisors(2)

[1] # 1 and 2 are divisors of 2, but 1 is the only proper divisor
>>> get_proper_divisors(3)

[1]

>>> get_proper_divisors(4)

[1, 2]

>>> get_proper_divisors(5)

[1]

>>> get_proper_divisors(6)

[1, 2, 3]

Name and SID: 10

B. Write a generator function perfect nums() that continually yields successive perfect numbers.
Perfect numbers are positive numbers that are equal to the sum of their proper divisors. You can
assume that get proper divisors() is implemented correctly and may use it in this problem.

def perfect_nums():
"""Generate each successive perfect number.
>>> perfect_num_gen = perfect_nums()
>>> next(perfect_num_gen)
6 # 6 is the first perfect number because its proper divisors are 1,
2, 3 which sum to itself
>>> next(perfect_num_gen)
28 # 28 is the second perfect number because +its proper divisors are
1, 2, 4, 7, 14 which sum to 1itself

Name and SID: 11

6. Time Is Money

Fill inthe next method in Timer and the pass_time method in KitchenCounter. A timer should
step forward one second each time next is called. Once the timer runs out, you should print out a
message that says the food is ready. KitchenCounter maintains a list of timers; pass_time should
step forward all of the timers by the amount of seconds specified by the time and unit arguments.
The timers should always be within one second of each other (i.e. increment all of the timers once
before incrementing any timer twice.) TIP: Don’t forget about StoplIteration Error.

class Timer:
mmnn

>>> a Timer ("Pete Zaroll", 2, "seconds")
>>> b = [i for i in a]

Pete Zaroll s ready!
mmnn

Maps a unit string to a multiplier that converts it to seconds
unit2Seconds = {"seconds" : 1, "minutes" : 60, "hours" : 60%60}
def __init__(self, food, time, unit):

self.food = food

self.current = 1

self.time = time * self.unit2Seconds[unit]

def __+dter__(self):
return self

def ready(self):
print(self.food + " dis ready!")

def __next__(self):

Name and SID: 12

class KitchenCounter:
mmn

>>> a = Timer("Pete Zaroll", 15, "minutes")

>>> b = Timer("Chim E Changa", 20.5, "minutes")
>>> ¢ = Timer("Pho Lah Phil", 12, "seconds")
>>> k = KitchenCounter ()

>>> k.add_timers([a, b, c])

>>> k.pass_time(1l2, "seconds")

Pho Lah Phil s ready!

12 seconds passed

>>> k.pass_time (15, "minutes")
Pete Zaroll is ready!

15 minutes passed

>>> k.pass_time(5.5, "minutes")
Chim E Changa 1is ready!

5.5 minutes passed
mmn

unit2Seconds = {"seconds" : 1, "minutes" : 60, "hours" : 60x60}
def __1init__(self):
self.timers = []

def add_timers(self, timers):
self.timers += timers

def pass_time(self, time, units):
"""Tncrement each timer in self.timers by the appropriate amount of

seconds. Remove any timer from the list of timers once its time has run

out. Hint: lists have a remove method. Hint: StopIteration
mmon

seconds = int(self.unit2Seconds[units]*xtime)

print(str(time) + " " + str(units) + " passed")

Name and SID: 13

7. Class Is in Session

Implement the 3 classes to match the interactive outputs below:

$ python3

>>> andrew = Person("Andrew")

>>> andrew.say()

Hi I'm Andrew

>>> alex = TA("Alex")

>>> amir = Student("Amir", alex)

>>> amir.say()

Hi I'm Amir and I'm in Alex's lab

>>> alex.add_student(amir)

>>> alex.add_student(Student("Jessica", alex))
>>> alex.say()

Hi I'm Alex and my students are Amir Jessica
>>> alex.add_student(Student(“Gerald”, alex))
>>> alex.say()

Hi I'm Alex and my students are Amir Jessica Gerald

class Person:

def __init__(self, name):
self.name = name

def say(self):
print("Hi I'm " + self.name)

def say(self):

Name and SID: 14

CS88 Final Study Guide - Page 1

Numeric types 1in Python:

>>> type(2) . Represents :
<class 'int'>—=— integers

L exactly)
>>> type(1.5) S

<class 'float'>

Represents real
| numbers
>>> typ?(1+1J) | approximately
<class 'complex'>| Y

Rational implementation using functions:

édef rational(n, d):

"def select(name): e R
E £ I — < This E

1T Ndme == Y- | function

return n | represents

elif name == 'd': i| a rational
R return d [numoer
_____________ return select

/\
4)

Constructor 1s a

higher-order function
g J

def numer(x): ...

return; x('n’) iy)

Selector calls Xx

def denom(x):
return x('d")

A combined expression that evaluates to a list using this

List comprehensions:

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

evaluation procedure:
1. Add a new frame with the current frame as 1ts parent
2. Create an empty result list that is the value of the

expression

3. For each element in the 1terable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add
the value of <map exp> to the result list

List & dictionary mutation:

= 4 = -

>>> 12el?2
12000000000000.0

>>> print(repr(12e12))

12000000000000.0

str and repr are both polymorphic; they apply to any object

ne result of calling repr on a value 1s
nat Python prints in an interactive session

ne result of calling str on a value 1s
nat Python prints using the print function

>>> print(today)
2014-10-13

>>> g = [10] >>> g = [10]
>>> b = 3 >>> b = [10]
>>> g == >>> g ==
True True

>>> a.append(20) >>> b.append(20)
>>> g == >>> d

True [10]

>>> g >>> D

[10, 20] [10, 20]

>>> P >>> g ==
[10, 20] False

>>> nums = {'I': 1.0, 'V': 5, "X': 10}
>>> nums|['X"']
10

>>> nums['I"]
>>> nums['L"']
>>> NUMS
{'X': 10, 'L': 50, 'V': 5, 'I': 1}
>>> sum(nums.values())

1
50

repr invokes a zero—argument method _ repr__ on 1ts argument 60

>>> today.__repr_ ()

>>> today._ _str_ ()

'datetime.date(2014, 10, 13)' '2014-10-13"

>>> dict([(3, 9), (4, 16), (5, 25)])
{3: 9, 4: 16, 5: 25}
>>> nums.get('A', 0)

Lists:

>>> dlgltS — [1; 8; 2) 8]
>>> len(digits)

Ist
4 .
>>> digits[3] digits | —u 01 18 22 38
8

>>> [2, 7] + digits x 2
2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1] list list

[30, 40]

- 0 |1 0 1
>>> pairs[1] [0] pairs | — V’T’ 10 |20

30

Executing a for statement: \Iist

for <name> in <expression>: 030 140
<suite>

1. Evaluate the header <expression>,
which must yield an iterable value
(a sequence)

2. For each element 1n that sequence,
in order:

A. Bind <name> to that element 1in
the current frame
B. Execute the <suite>

Unpacking 1in a A sequence of
for statement: fixed-length sequences

~>> pairs=[[1, 21, [2, 21, [3, 2], [4, 411
>>> same count =@ T

A name for each element 1n a
fixed—-length sequence

N .
>>> for:x, y:1in pailrs:
1f X ==y

same_count = same_count + 1

>>> Same_count

>>> suits = ['coin',

'string', 'myriad']

>>> syuits.pop() —
'myriad’

>>> suits.remove('string")

>>> suits.append('cup

H)

%/Remove and return
L»the last element

<(: Remove a value :)

>>> suits.extend(['sword', 'club'])

>>> syits[2] = 'spade
>>> suUlts

['coin', 'cup', 'spade',

>>> suits[0:2] = ['diamond']ﬁRe.place. £
- slice with
>>> SUlts

'club’']

['diamond', 'spade',

‘\

Add all |

values
‘club'] — 3

values

J

>>> suits.insert (0, 'hear’c'){Add an element]

>>> Ssults
['"heart', 'diamond',

Identity:
<exp0> 1s <expl>

at an 1ndex

'spade', 'club']

evaluates to True 1f both <exp®> and
<expl> evaluate to the same object

Equality:
<expd> == <expl>

evaluates to True 1f both <exp0®> and
<expl> evaluate to equal values
Identical objects are always equal values

You can copy a list by calling the list
constructor or slicing the list from the

beginning to the end.

0

>>> nums.get('V', 0)

5

>>> {x: x*x for x in range(3,6)}

{3: 9, 4: 16, 5: 25}

Strings as sequences:

>>> clity = 'Berkeley’

>>> len(city)

8

>>> city|[3]

Ikl

>>> 'here' 1n "Where's Waldo?"
True

>>> 234 in [1, 2, 3, 4, 5]
False

>>> [2, 3, 4] in [1, 2, 3, 4]
False

Membership:

>>> digits = [1, 8, 2, 8]
>>> 2 1n digits

True

>>> 1828 not 1n digits
True

Global frame

make_withdraw

withdraw

fl: make withdraw [parent=Global]
4 alance |50
The parent \>?
withdraw

") _31 _21 _11 Qr 11 21 31 41

S

range(-2, 2)

Length: ending value - starting value
Element selection: starting value + index

>>> list(range(-2, 2))<£List constructor}
[-2, -1, 0, 1]

>>> list(range(4)) Range with a 0
[0, 1, 2, 3] starting value

_

frame contailns

rReturn

the palance of value
withdraw

J

f2: withdraw [parent=f1]

-

) amount

Every call
decreases the
same balance

Return
value

f3: withdraw [parent=fl]

amount

Return
value

25
/5

25
50

func make _withdraw(balance) [parent=Global]

func withdraw(amount) [parent=f1l]

Slicing:

>>> digits[0:2]
[1, 8]
>>> digits[1:]

>>> withdraw = make withdraw(100) [8, 2, 8] /\

>>> withdraw(25)
/5
>>> withdraw(25)
50
def make withdraw(balance):
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'No funds'

balance = balance — amount

return balance
return withdraw

Slicing creates
a new object

Status X = 2
*No nonlocal statement
o'"x" 1s not bound locally

*No nonlocal statement
o"x" 1s bound locally

enonlocal X
o"x" 15 bound in a
non—-local frame

enonlocal X
o"x" 15 not bound in
a non—-local frame

enonlocal Xx

o'"x" 1s bound in a
non—-Llocal frame

o'"x" also bound locally

Effect
Create a new binding from name "x" to number 2
in the first frame of the current environment

Re-bind name "x" to object 2 in the first frame
of the current environment

Re-bind "x" to 2 in the first non-local frame of
the current environment 1n which "x" 1s bound

SyntaxError: name 'x' 1s parameter and nonlocal

CS88 Final Study Guide - Page 2

Tree data abstraction: Python object system:

Idea: ALl bank accounts have a balance and an account holder;
the Account class should add those attributes to each of 1ts i1nstances

" A new instance is —>>>> @ = Account('Jim')
created by calling a | >>> a-holder e ‘
S class y Jim
E 5 g>> a.balance An account instance
:"4{ \\ ; 1 S é ------------------------ k ; When a class 1s called: balance: 0 holder: 'Jim’ :
0 1 5,// N N - 1.A new instance of that class is created: ! RRRREEREEE .
"""" ’ 0 1 § 1 1 - 2.The _init_ method of the class is called with the new object as its first ::
A tree has a root value and i] argument (named self), along with any additional arguments provided in the
- SN .
a sequence of branches; ;] call expression.
each branch 1is a tree { 0 i o o
e S class Account: A .
e ” o | ~—def __init__ (self, account_holder):
def tree(root, branches=[]): — N __1nit__ 1s called a self.balance = 0 R e e e e e e e
f&F"BFéﬁEH"iﬁ"EFéﬁéﬁéé """"" 'ﬁ<(Verifties the 8 constructor) self.holder = account_holder
__________ Q§§?fﬁ"}§mﬁfﬁﬁigﬁéﬂ£hl"mufree definition def deggs;t{self _amo%gt% 1 t
return [root] +:list(branches) : 4 \///;7i:turnaSZQEGb;IZﬁce atahte = amoun
def t(t) S self should always be def withdraw(self mount) :
er 100 ree): Creates a list from a bound to an instance of |“¢ .l awisetr, amou '
return treel0] 1f amount > self.balance:
sequence of branches the Account class or a : . :
def branches(tree): 3 subclass of Account lfrgt%rn Insuf{ic;e?t funds +
' — — 9 y self.balance = self.balance - amoun
return tree[1:] Ver;flez Ehat {fei 1S ’///// \\\\\ return self.balance
ound to a 1lis
def is_tree(tree): “~/— o p . >>> type(Account.deposit)
if {type(tree) != listior len(tree) < 1: 1 2 Function call: all| <class "function >
m}é{h}ﬁmﬁafgé """"""" y AN arguments within >>> type(a.deposit)
for branch in branches(tree): 1 1 N parentheses =class method =
if not is_tree(branch): >>> tree(3, [tree(1), " EQ\
~eturn False - tree(2, [tree(1), Method invokation: | >>> Account.deposit(a, 5)
return True P tree(1)])1]) One object before | 10 s ,
[3, 11, [2, [11, [1]]] the dot and other >>>*{a.deposit(2) { Call expression j
def is_leaf(tree): arguments within 125 A g
return not branches(tree) |def fib_tree(n): parentheses § [Dot expression ji
. 1f n == 0 or n == 1: - / g §
def leaves(tree): | return tree(n) S ;
"""The Lleaf values 1n tree. _ ,
else: <expression> . <name>

The <expression> can be any valid Python expression.

The <name> must be a simple name.

Evaluates to the value of the attribute looked up by <name> in the object
that 1s the value of the <expression>.

. left = fib _tree(n-2),
>>> Leaves(fib _tree(5)) . T B
1,0, 1, 0, 1, 1, 0, 1] right = fib_tree(n-1)

A fib n = root(left) + root(right)
return tree(fib_n, [left, rightl])

if is leaf(tree):

return [root(tree)] To evaluate a dot expression:
else: 1. Evaluate the <expression> to the left of the dot, which yields
return sum([leaves(b) for b in branches(tree)], []) the object of the dot expression
class Tree: - N 2. <name> 1s matched against the instance attributes of that object;
L | - C . -
def _ init_ (self, entry, branches=()): Built—in isinstance 1t an attribute with that name exists, 1ts value 1s returned
function: ret T Xi 3. If not, <name> 1is looked up 1in the class, which yields a class
self.entry = entry unction: returns True 1 ,
b h h 1 h attribute value
for branch in branches: ranch has a class that . L . . .
""""""""""""""""""""""""""""""""""" is or inherits from Tree 4. That value 1s returned unless i1t is a function, in which case a
assert iisinstance(branch, Tree)<i» " . .
-- P ound method 1s returned instead
self.branchés = llst(branches)
def is_leaf(self): def fib Tree(n): Assignment statements with a dot expression on their left—hand side affect
return not self.branches ifn==0ornz=1: attributes for the object of that dot expression
return Tree(n) e If the object 1is an instance, then assignment sets an instance attribute
else: e If the object 1s a class, then assignment sets a class attribute
def 1 + . left = fib_Tree(n-2) s
© .feives(.r‘ei).f . right = fib _Tree(n-1) Accoun.t class interest: M M 0.05
1 tree.is_leaf(): fib n = left.entry+right.entry attributes (withdraw, deposit, __ _init_)
return [tree.entry] , : ~
return Tree(fib _n,[left, right])
else: 4 ‘\:> _ 4 ‘¥>> hal -
return sum([leaves(b) for b in tree.branches], []) Instance ba lance: @ Instance a.ance. ¢
. attributes of holder: Jim attributes of holder: Tom
class Link: <[Some zero . jim_account) interest: 0.08 . tom_account)
"""" length n] |
empty = ﬁl, I >Eque C§/ >>> jim_account = Account('Jim") >>> J}m_account.}nterest = 0.08
def init (self, first, rest=empty): >>> tom account = Account('Tom"') >>> J1m_account.interest
self.first = first >>> tom_account.interest 0.08 |
self.rest = rest Sequence abstraction special names: 0.02 >>> tom_account.1interest
def _ getitem_ (self, 1i): >>> jim_account.interest 0.04 |
if 1 == 0: __getitem_ Element selection [] 0.02 >>> Account.interest = 0.05
return self.first | | | >>> Account.1lnterest = 0.04 >>> tom_account.interest
else: __len__ Built-1n len function >>> tom account.interest @.05.. |
return self.rest[i-1] 0.04 >>> jim_account.interest
def __len__(self): . >>> jim_account.interest 0.08
return 1 +: l?ﬂfﬁ?lfmf?ﬁﬁu<<i Yes, this call 1s recursive) 0.04
def repr_ (self):
if self.rest: class CheckingAccount (Account)):
rest_str = ', ' + repr(self.rest) g A """A bank account that charges for withdrawals."""
else: Contents of the withdraw fee = 1
rest str o repr string of interest = 0.01
return L1nk({@}{1}) .format(self.first, rest str) |a Link instance def withdraw(self, amount):
. - / "return Account.withdraw(self, amount + self.withdraw fee)
def extend_link(s, t): . .
""MReturn a Link with the >>> s = Link(3, Link(4)) t ,,fff””" oL
elements of s followed by >>> extend_link(s, s) return {super()i.withdraw(amount + self.withdraw_fee)
those of t. Link(B, Link(4, Link(3, Link(4)))) N /
il >>> square = lambda X: X * X To look up a name in a class:
if s is Link.empty: >>> map_Llink(square, s) 1. If 1t names an attribute in the class, return the attribute value.
return t Link(9, Link(16)) 2. Otherwise, look up the name in the base class, if there is one.
else; | | | >>> ch = CheckingAccount('Tom') # Calls Account. init
return Link(s.first, extend_link(s.rest, t)) -~~~ ch.interest # Found in CheckingAccount
def map_link(f, s): 0.01 | |
if s is Link.empty: >>> ch.deposit(20) # Found in Account
return s 20 | |
else: >>> ch.withdraw(5) # Found in CheckingAccount

return Link(f(s.first), map_link(f, s.rest)) 14

