Reverse WWPP

def f1(x, y):
print(x + y)
return y + x

1stl = list(range(5))

class Act:
def __init__(self, x):
self.y = x

def update(self, y):
self.x = vy
return self.y

def swap(self, y):

self.x, self.y = self.x + vy, self.y - vy

def __next__(self):
self.x += self.y
if self.x > 10:
raise StopIteration
return self.x
def __+dter__(self):
self.x - 1
return self

Code Python output
f1(3, 1) 4
4
f1(r3], [[111) [3, [1]]
(i1, 3]
lstl[1:3] + [f1([2], [3]1)] (2, 3]

(1, 2, [3, 2]]

act = Act(1l) [7, O]
Act.swap(act, act.update(6))

[act.x, act.y]

it = Act(2) 2
print(it.update(3)) [11, 17]
it.swap(-1)

[x * 2 + 1 for x 1in 1it]

An Environmental Disaster

Solution

-+
I

lambda x: lambda x: x * 2

£(2)(2)

X
1

http://pythontutor.com/composingprograms.html#code=f%20%3D%20lambda%20x%3A%20lambda%20x%3A%20x%20*%202%0Ax%20%3D%20f%282%29%282%29&cumulative=true&curInstr=8&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Squash the Bugs Version 1!

Each of the functions below have a specific number of bugs. Read
through the functions and doctests. First, write down what the
function currently returns with the input given. After that,
write down each bug you find and how to fix 1it. Please do not
write down an alternate solution, rather, you should try to find
bugs in the solutions provided.

What the code currently returns may or may not be the same as
what is shown on the doctests.

Q1 How often?- 3 Bugs
def frequency(text):

Returns a dictionary containing how often each word in the text
appears. Do not worry about punctuation/ multiple whitespaces. Assume
split() splits the text string into a list at each whitespace. Hint:
one of the bugs would require adding a line of code with a function
call
>>> str = “bananas and apples and ApPlEs and oranges”
>>> frequency (text)
{“bananas”: 1, “and”:3, “apples”:2, “oranges”:1}
>>> str = “cs cs 88”
>>> frequency (text)
{“CS”Z 2, “gg”: 1}
nmnmnn
dict_word = {}
testList = text.split()
for word in textList:
if word in dict_word:
dict_word[word] = dict_word[word] + 1
return dict_word
dict_word[word] = 1
return dict_word

What does the code currently return with no changes?
frequency (“cs cs 88”)

Demonstrate the bug:

What are the 3 bugs and how do you fix them?

N

Currently returns: {“cs” : 2}

Demonstrate the bug: Many solutions, any input with it’s output was
acceptable as long as the function did not work as -intended:

Example that was given credit: frequency(“we love cs88 cs88 (Cs88”):
{“we”:1, “love”:1, “cs887:2}
-incorrect because answer should be {“we”:1, “love”:1, “cs88”:3}

Example that was not given credit: frequency(“abcd”): {“abcd”:1}
-this s incorrect as it does not demonstrate a bug

There are three bugs in this question. The first bug is that the
return in the if statement should be removed. Otherwise, the function
will stop at the first word that is found a second time. The second
one 1is that dict_word[word] needs to be in an else statement,
otherwise, each word will always have a frequency of 1. The third bug
is that string comparison does not ignore case, so it is required that
there is a text.lower() to make sure that apples and ApPlEs are both
treated the same.

PLEASE note that an explanation AND fix was required for full credit
and partial credit was given if only one of the two was provided.

Squash the Bugs Version 2!

Each of the functions below have a specific number of bugs. Read
through the functions and doctests. First, write down what the
function currently returns with the input given. After that,
write down each bug you find and how to fix 1it. Please do not
write down an alternate solution, rather, you should try to find
bugs in the solutions provided.

What the code currently returns may or may not be the same as
what is shown on the doctests.

Q1 How often?- 3 Bugs
def frequency(sentence):

Returns a dictionary containing how often each word in the text
appears. Do not worry about punctuation/ multiple whitespaces. Assume
split() splits the text string into a list at each whitespace. Hint:
one of the bugs would require adding a line of code with a function
call
>>> str = “bananas and apples and ApPlEs and oranges”
>>> frequency (text)
{“bananas”: 1, “and”:3, “apples”:2, “oranges”:1}
>>> str = “cs cs 88”
>>> frequency (text)
{“cs”: 2, “88”:1}
nmnn
wordMap = {}
words = sentence.split()
for word in sentence:
if word in wordMap:
wordMap[word] = wordMap[word] + 1
return wordMap
wordMap[word] = 1
return wordMap

What does the code currently return with no changes?
frequency (“cs cs 88”)

Demonstrate the bug:

What are the 3 bugs and how do you fix them?
1.
2.
3.

Currently returns: {"c":2, 's':1, ' ':1}

Demonstrate the bug: Many solutions, any input with it’s output was
acceptable as long as the function did not work as intended. Anything,
other than a one character string, would have worked as long as the
actual and expected outputs were correct.

There are actually 4 bugs in this question. Three were required for
full credit. The first bug is that the return in the 1if statement
should be removed. Otherwise, the function will stop at the first word
that is found a second time. The second one 1is that wordMap[word]

needs to be in an else statement, otherwise, each word will always
have a frequency of 1. The third bug is that string comparison does
not ignore case, so it is required that there 1is a sentence.lower() to
make sure that apples and ApPlEs are both treated the same. The fourth
bug is that the for loop should -iterate through words, otherwise, the
loop iterates through each of the characters 1in sentence.

PLEASE note that an explanation AND fix was required for full credit
and partial credit was given if only one of the two was provided.

Just Bugs...Not Murder Hornets

a. WITH BUGS, necessary corrections 1in red

class Exam():
course = 'cs88'
instructors = ['Gerald Friedland', 'Michael Ball']
tas = ['Alex Kassil', 'Brian Mi', 'Julia Yu', 'Alec Kan', 'Cameron
Malloy', 'Shreya Kannan', 'Sophia Qin', 'Srinath Goli', 'Vandana
Ganesh']
time = 90
def __init__(self, name, student_-id):
self.name = name
self.sid = student_-id
self.score = {}

def grade(self, points_correct, points_total):
grade = points_correct/points_total
self.score[student_id] = grade

def view_score(self):
return score

class Question():
extra_credit = False
def grade(self, points_correct, points_total):
if self.extra_credit == False:
Exam.grade(points_correct, points_total)
else:
self.score[self.sid] += points_correct

oski_exam = Exam('Oski Bear', 123456789)
oski_gl = Question('Oski Bear', 123456789)
oski_ql.grade(24,36)

oski_gl.score

>>> {123456789: 0.6666666666666666}
oski_exam.score

>>> {}

b. Solution

class Exam():

'"Alec Kan', 'Cameron

course = 'cs88'

instructors = ['Gerald Friedland', 'Michael Ball']

tas = ['Alex Kassil', 'Brian Mi', 'Julia Yu',
Malloy', 'Shreya Kannan', 'Sophia Qin', 'Srinath Goli', 'Vandana
Ganesh']

time = 90

def __init__(self, name, student_-id):
self.name = name
self.sid = student_did
self.score = {}

def grade(self, points_correct, points_total):

grade = points_correct/points_total
self.score[self.sid] = grade

def view_score(self):
return self.score

class Question(Exam):
extra_credit = False

def grade(self, points_correct, points_total):

if self.extra_credit == False:

Exam.grade(self, points_correct, points_total)

else:

self.score[self.sid] += points_correct

Summoner’s School for SQL

As a student of CS88, you’ve been noticed for your sharp SQL skills and magical
powers in coding by the legends of Summoner’s Rift. They offer you the title of
“Master of Data,” a title renowned by many, but only if you can complete the
following SQL challenges. To aid you in your mission, you have given two tables:
champions and positions.

CREATE TABLE champions AS
SELECT "Aatrox" AS name, 580 AS health, 38 AS armor UNION
SELECT "Ahri", 526, 20.88 UNION
SELECT "Akali'", 575, 23 UNION
SELECT "Alistar", 575, 44 UNION
SELECT "Amumu", 613.12, 33 UNION
SELECT "Ashe", 539, 26 UNION
SELECT "Jax", 592.8, 36 UNION
SELECT "Lux", 490, 18.72 UNION
SELECT "Malphite", 574.2, 37 UNION
SELECT "Vayne", 515, 23 UNION
SELECT "Yasuo", 523, 30;

CREATE TABLE positions AS
SELECT "Aatrox" AS name, "Top" AS position UNION
SELECT "Ahri", "Middle" UNION
SELECT "Akali", "Top" UNION
SELECT "Akali", "Middle" UNION
SELECT "Aldistar", "Support" UNION
SELECT "Amumu", "Jungle'" UNION
SELECT "Ashe", "Bottom" UNION
SELECT "Jax", "Top" UNION
SELECT "Jax", "Jungle" UNION
SELECT "Lux", "Middle" UNION
SELECT "Lux", "Support" UNION
SELECT "Malphite", "Top" UNION
SELECT "Malphite", "Jungle" UNION
SELECT "Malphite", "Support" UNION
SELECT "Vayne", "Top" UNION

SELECT "Vayne", '"Bottom" UNION
SELECT "Yasuo", "Top" UNION
SELECT "Yasuo", "Mid";

1. Write a query that selects the name and health of the champion with the
greatest health. You may assume health values are unique.

CREATE TABLE health AS
SELECT name, health FROM champions
ORDER BY health DESC LIMIT 1;

Output:
sqlite> SELECT * FROM health;
Amumu | 613.12

2. Write a query that selects the names of champions who are played in the
jungle and have armor greater than 35

CREATE TABLE jungle AS
SELECT champions.name FROM champions, positions
WHERE champions.name = positions.name

AND position = "Jungle" AND armor > 35;
Output:
sqlite> SELECT * FROM jungle;
Jax | 36

Malphite | 37

3. Write a query that selects the five positions and the number of champions
that are played in each position sorted by the number of champions in
descending order, meaning the position with the highest number of
champions is at the top.

CREATE TABLE roles AS
SELECT position, COUNT(*) as count FROM positions
GROUP BY position ORDER BY count DESC;

Output:
sqlite> SELECT * FROM roles;
Top | 6

Jungle | 3
Middle | 3
Support | 3
Bottom | 2

Mid | 1

Iteration Generates Success

Given a list of single digits, create an Iterator that iterates through all the possible two
digit numbers that can be created from digits in the list. The __init _ method and
__iter___method have been completed for you.

class BuildNum:
>>> for i in BuildNum([1l, 2, 3]):
print (i)
11
12
13
21
22
23
31
32
33
def init (self, 1lst):
self.lst = 1lst
self.i = 0
self.j = 0

def next (self):
if self.i == len(self.lst):
raise StoplIteration
result = self.lst[self.i] * 10 + self.lst[self.]j]

if self.j == len(self.lst) - 1:
self.i += 1
self.j = 0

else:

self.j += 1

return result

def iter (self):

return self

Given a list of single digits, create a generator function that yields all the two digit
numbers that can be created from the given list of digits and only have repeated digits,
or a repdigit (ie. 11, 22, 33, ... 99). You may use BuildNum and assume it has been
implemented correctly for this part.

def rep digit(lst):
>>> for 1 in rep digit([1l, 2, 3]):
print (i)
11
22
33
for 1 in BuildNum(lst):
if (1 $ 10 == 1 // 10 % 10):
yield 1

88’s Bizzare Social Network

You are making a social network where users can make profiles with
their name and age. Users can keep track of their friends by adding
them to their friends list. You decide that in order to make money
you make users pay for premium accounts. Default profiles are limited
to one friend, while premium accounts can have up to 1000. In
addition, premium accounts have the ability to leave comments on other
user’s profiles. Whenever a profile 1is created it is added to a list
that contains all profiles ever created called all_profiles. Fill out
the respective Profile and Premium classes to create your social
network.

class Profile():

€»»

>>>joseph = Profile("Joseph", 19)

>>>jonathan = Profile("Jonathan", 20)

>>>dio = Premium("Dio",21) #dio has a premium account

>>>dio.name #profiles have an associated name

“Dio”

>>>dio.age #profiles have an associated age

21

>>>1len(Profile.all_profiles) #all_profiles should contain
all three profiles: joseph, jonathan, and dio

3

>>>joseph.add_friend(jonathan)

>>>1len(joseph.friends)

1

>>>joseph.add_friend(dio) #default profiles can only have
one friend, so adding a second friend should print “Friends list
full!?”

Friends list full!

>>>dio.add_friend(joseph)

>>>dio.add_friend(jonathan)

>>>1len(dio.friends) #premium profiles can have up to 1000
friends

2

>>>dio.comment(jonathan, "Oh? You're Approaching Me?")

>>>jonathan.comments #premium profiles can leave comments
on any profile. Comments are recorded in a list.

["Oh? You're Approaching Me?"]

>>>jonathan.comment(dio, "What?") #Default accounts cannot
comment and instead should print Need premium account to
comment"

"Need premium account to comment"

€

all_profiles = []

limit = 1

def __init__(self, name, age):
self.friends = []
self.comments = []
self.name = name
self.age = age
Profile.all_profiles.append(self)

def add_friend(self, friend):
if(len(self.friends) < self.limit):
self.friends.append(friend)
else:
print("Friends list full!")

def comment(self, account, msg):
print("Need premium account to comment.")

class Premium(Profile):
def __init__(self, name, age):
super () .__init__(name, age)
self.limit = 1000

def comment(self, account, msg):
account.comments.append(msg)

*Not sure how open ended to make the question so it could probably be
adjusted by amount of given code

Perfect SymmeTREE

Q1: We will call a symmetric decreasing tree a tree where every node
has 2 branches and the values in every node decrease by 1 every time
the depth increases by 1. Write a function symmetric_decreasing_tree
that given n, constructs a symmetric decreasing tree where the node at
depth 0 has a value n, every node at depth 1 has a value n - 1, and so
on, and all the leaves of the tree should have value 1. Assume that n
>= 1.

def symmetric_decreasing_tree(n):
mmnn
>>> symmetric_decreasing_tree(3)
Tree(3, [Tree(2, [Tree(l), Tree(l)]), Tree(2, [Tree(l), Tree(l)])])
>>> symmetric_decreasing_tree(l)

Tree(1)
nmnn
if n == 1:
return Tree(n)
else:
branches = [symmetric_decreasing_tree(n-1) for i 1in range(2)]

return Tree(n, branches)

Q2: A 'tree'cherous villain wants to ruin our symmetric decreasing
tree by removing valuable information from it and polluting the tree
with extra unlucky nodes. The villain has provided a linked list of
numbers he wants to erase from the tree. Help the villain finish this
task by completing the following methods.

a) Implement a helper function contains_val that returns whether or
not a linked list contains a value.

def contains_val(lnk, val):
>>> contains_val(Link(4, Link(7, Link(1, Link(3)))), 7)
True
>>> contains_val(Link(5, Link(6, Link(8))), 3)
False
nnn
if lnk is Link.empty:
return False
else:

return lnk.first == val or contains_val(lnk.rest, val)

b) Implement the function destroy_tree by changing any value 1in the
tree that appears in the supplied linked list to 0. You may use the
method implemented in part (a).

def destroy_tree(t, 1lnk):
nmmnn
>>> t3 = symmetric_decreasing_tree(3)
>>> bad_nodes = Link(3, Link(5, Link(1)))
>>> destroy_tree(t3, bad_nodes)
>>> t3
Tree(0, [Tree(2, [Tree(0), Tree(0)]), Tree(2, [Tree(0), Tree(0)])])
if contains_val(lnk, t.entry):
t.entry = 0

for b in t.branches:
destroy_tree(b, 1lnk)

c) Implement the function add_unlucky_leaves that, given a list of
unlucky numbers, mutates the original tree by adding all of these
numbers as branches to each of the original leaves in the tree. You
can assume the list of unlucky numbers is not a nested list.

def add_unlucky_leaves(t, unlucky_nums):
>>> t = Tree(0, [Tree(2, [Tree(l), Tree(5)]1)]1)
>>> add_unlucky_leaves(t, [13, 6, 17])
>>> t
Tree(0, [Tree(2, [Tree(l, [Tree(13), Tree(6), Tree(17)]), Tree(5,
[Tree(13), Tree(6), Tree(17)1)1)1)
if t.is_leaf():
t.branches = [Tree(val) for val in unlucky_nums]
else:
for b in t.branches:
add_unlucky_leaves (b, unlucky_nums)

