
CS 88 Computational Structures in Data Science
Spring 2020 Midterm

INSTRUCTIONS

• The exam is worth 60 points, across 6 questions.

• You should have 5 sheets (9 sides) in your exam booklet.

• You have 2 hours to complete the exam. Do NOT open the exam until you are instructed to do so!

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official CS 88 Midterm study guide.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, and abs.

• You may not use example functions defined on your study guide unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

1. (10 points) What Would Python Display?

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If evaluation would run forever, write “Forever”. To display a
function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left.

x = 8

y = 88

z = 888

s = ’cs’

f = (lambda x: lambda y:

lambda z: x + y(z))(2)

def strange(x):

print(’1/4’)

print(x + x, print (5))

return

print (1/0)

buffer = 3

def foo(x):

def bar(g, t):

print("mustard")

if x % 3 == 0:

print(g(x))

else :

print(t(x))

print("ketchup")

return bar

Expression Interactive Output
g = print(’hello world’)

print(g)

hello world
None

s + y

f(lambda x: x * x)(2)

strange(7)

a = foo(5)

b = a(lambda x: x + buffer,

lambda x: (x * x) + buffer)

Page 2

2. (10 points) A Brew-tiful Environment!

Fill in the environment diagram that results from executing the
code on the right until the entire program is finished, an error
occurs, or all frames are filled. You
A complete answer will:

• Add all missing names and parent annotations to all local
frames.

• Add all missing values created or referenced during
execution.

• Show the return value for each local frame.

• Draw any arrows as necessary.

Global frame tax

tax = 0.1
price = lambda x: x * (1 + tax)
milk = 10
foam = 20

def latte(size):
 def oat_milk():
 return lambda: size
 def soy_milk():
 return latte(milk + foam)
 latte = price
 return [oat_milk, soy_milk]

soy_milk = latte("grande")
final = soy_milk[1]()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

f2: ___________ [parent=____________]

Return Value

f3: λ <line 2> [parent=____________]

Return Value

func latte(size) <line 2> [parent=Global]

10

func λ(base) <line 2> [parent=Global]

f1: ___________ [parent=____________]

Return Value

price

milk

0.1

foam

latte

soy_milk

final

list: [___________ , ________________]

20

size

oat_milk

“grande”

soy_milk

latte

Global frame tax

tax = 0.1
price = lambda x: x * (1 + tax)
milk = 10
foam = 20

def latte(size):
 def oat_milk():
 return lambda: size
 def soy_milk():
 return latte(milk + foam)
 latte = price
 return [oat_milk, soy_milk]

soy_milk = latte("grande")
final = soy_milk[1]()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

f2: ___________ [parent=____________]

Return Value

f3: λ <line 2> [parent=____________]

Return Value

func latte(size) <line 2> [parent=Global]

10

func λ(base) <line 2> [parent=Global]

f1: ___________ [parent=____________]

Return Value

price

milk

0.1

foam

latte

soy_milk

final

list: [___________ , ________________]

20

size

oat_milk

“grande”

soy_milk

latte

List

0 1

Page 3

3. (10 points) Counting?! It’s All Greek to Me.

(3.1) Fill in the body of find digits which takes a number n and a function func. func takes in a single
parameter and returns a Boolean. find digits should return a new number that is built from all the digits that
the function evaluates to True. The new number should keep all the digits in the same order that they were in
n. If there are no digits that satisfy the function, return 0.

In order to fill out the body of find digits, we have provided the lines of code for you. However, these lines
are not in the correct order! You should reorder them, and fill in any blank values. You may assume each line
should be used once, and there is no need for additional code.

return_number = 0

return_number += current_digit * 10 ** ten_exponent

current_digit = n % 10

return return_number

if func(current_digit):

while (n > 0):

n = n // 10

ten_exponent += 1

ten_exponent = 0

def find_digits(n, func):

"""

>>> find_digits (123456789 , lambda x: x < 4)

123

>>> find_digits (1936382 , lambda x: x > 5)

968

>>> find_digits (1111111 , lambda x: x > 2)

0

"""

Page 4

(3.2) Now, write a higher order function divisible that when passed into find digits will return the digits
divisible by y. You may assume that find digits is implemented correctly.

We have provided more lines than you may need to solve this function.

def divisible(y):

"""

>>> divisible_by_three = divisible (3)

>>> find_digits (987654321 , divisible_by_three)

963

>>> divisible_by_ten = divisible (10)

>>> find_digits (987654321 , divisible_by_ten)

0

"""

Page 5

4. (10 points) I’m Just a Student, Sitting in Front of a Computer, Asking it to Solve My Game

We’ve gotten bored of playing Tic-Tac-Toe with our friends, so we’ve decided it’s time to write a program to
ensure we always win! So far, we’ve built some handy functions, and now it’s your turn to complete our program.

Given the functions below, complete the function named determine win, which returns whether or not the given
player won the Tic-Tac-Toe game. In the Tic-Tac-Toe game, a player can win if their marker, ′X ′ or ′O′ makes
a straight line horizontally, vertically, or diagonally.

We have provided three functions, which you can assume are correct: all four equal, column, and diagonal.
For full credit, your solution must make use of each of these functions. (Part of this question is to spend time
reading and understanding these functions before moving on to your own solution. As long as you use these
three, there’s many valid solutions.)

def all_four_equal(pieces , player):

"""

Returns true if the set of 3 pieces is the same as the player.

>>> all_four_equal ([’X’, ’X’, ’X’], ’O’)

False

"""

return pieces [0] == pieces [1] == pieces [2] == player

def column(board , index):

"""

Return the 0th , 1st , or 2nd column in a board.

>>> column ([[’X’, ’O’, ’X’],

[’O’, ’X’, ’X ’],

[’O’, ’X’, ’O ’]], 1)

[’0’, ’X’, ’X ’]

"""

return [row[index] for row in board]

def diagonal(board , index):

"""

Return either 0th or 1st diagonal in a board.

>>> diagonal ([[’X’, ’O’, ’X’],

[’O’, ’X’, ’X’],

[’O’, ’X’, ’O ’]], 1)

[’X’, ’X’, ’0’]

"""

if index == 0:

return [board [0][0] , board [1][1] , board [2][2]]

else:

return [board [0][2] , board [1][1] , board [2][0]]

Page 6

def determine_win(board , player):

"""

>>> determine_win ([[’X’, ’O’, ’X’],

[’O’, ’X’, ’X ’],

[’O’, ’X’, ’O ’]], ’O ’)

False

>>> determine_win ([[’O’, ’O’, ’O’],

[’X’, ’O’, ’X ’],

[’X’, ’O’, ’X ’]], ’O ’)

True

"""

Page 7

5. (10 points) Atey Ate Already

It’s a lot more fun to think about food than take midterms, so let’s look at the cheapest places to fulfill an
order. Given the function total cost and assuming it works as described, fill out find restaurant to find the
cheapest restaurant to fulfill the order.

Remember: Pay close attention to the doctests to guide your solution.

def total_cost(restaurant , order):

"""

Function that returns the total cost of an order at a certain

restaurant. Returns -1 if fulfilling the request is not possible.

>>> total_cost(’chipotle ’, [’burrito ’, ’taco ’])

11.96

>>> total_cost(’sliver ’, [’boba ’])

-1.0

"""

We have omitted how this function works.

def find_restaurant(restaurants , order):

"""

Function that returns the cheapest restaurant and price as the first

element of a list followed by the prices for each of the restaurants.

In the case that no restaurant can fulfill the order , the first

element should be [’None found!’, -1]. In the case that two

restaurants have the same price , keep the first restaurant.

Hint: Use total_cost!

>>> find_restaurant ([’chipotle ’, ’la burrita ’], [’burrito ’, ’taco ’])

[[’la burrita ’, 9.78], [[’chipotle ’, 11.96] , [’la burrita ’,9.78]]

>>> find_restaurant ([’sliver ’,’cheeseboard ’], [’boba ’])

[[None found!, -1.0], [’sliver ’, -1.0][’ cheeseboard ’, -1.0]]

"""

Page 8

6. (10 points) Rooms within Rooms within Rooms

You are a Data Scientist hired by UC Berkeley to find the largest room on campus. In order to schedule midterms,
your job is return the room and its capacity. The data on all the rooms plus capacity is in a weird format of
three element lists, where the first element is the room, the second element is the capacity, and the third element
is either the rest of the data or None. Assume that the capacity of each of the rooms is unique.

That is, the data look like [’Room’, Number, [...]].

Use the following lines of code to fill in the body of the function. You will need to fill in the blanks of the lines
provided. Some lines are optional.

return [rooms [0], rooms [1]]

largest_left = find_largest(______________________)

if rooms [2] == ______________:

if largest_left [1] > rooms [1]:

return ____________________

return ____________________

else: # this line is optional , depending upon your solution

else: # this line is optional , depending upon your solution

def find_largest(rooms):

"""

Return the largest room from a weirdly nested list.

You can assume rooms is always 3 items long.

>>> rooms = [’Evans ’, 150, [’Wheeler ’, 700, [’Stadium ’, 50000, None]]]

>>> find_largest(rooms)

[’Stadium ’, 50000]

>>> find_largest ([’Evans ’, 150, None])

[’Evans ’, 150]

"""

Page 9

