
CS 88 Computational Structures in Data Science
Spring 2022 midterm

INSTRUCTIONS

• Do NOT open the exam until you are instructed to do so!

• You must not collaborate with anyone inside or outside of CS88.

• You must not use any internet resources to answer the questions.

• If you are taking an online exam, at this point you should have started your Zoom / screen recording. If
something happens during the exam, focus on the exam! Do not spend more than a few minutes dealing with
proctoring.

• When a question specifies that you must rewrite the completed function, you should not recopy the doctests.

• The exam is closed book, closed computer, closed calculator, except your hand-written 8.5" x 11" cheat sheets
of your own creation and the official CS88 Reference Sheet

Full Name

Student ID Number

Official Berkeley Email (@berkeley.edu)

What room are you in?

Name of the person to your left

Name of the person to your right

By my signature, I certify that all the
work on this exam is my own, and I will
not discuss it with anyone until exam
session is over. (please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• Online Exams: You may start you exam as soon as you are given the password.
• You may have a digitial version of the CS88 Reference Sheet, or the PDF, but no other files.

Exam Clarifications: https://docs.google.com/document/d/1-zKDRM84o6cr5lGel3C8CuF-ttPNkQVILAKa39_caDk/edit?usp=sharing
Reference Sheet: https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view

https://drive.google.com/file/d/1vGqbiXnxiUu19hjrB9MNizo5kd-al5iU/view?usp=sharing


Exam generated for 2

1. (5.0 points) What Would Python Do (WWPD)

>>> def f1(x, y):
if x > (x + y):

print(x)
y = x

if x > (x - y):
print(y)
x = y

return x + y
>>> def f2(a, b):

if a:
return b and a

else:
return a or b

>>> f3 = lambda lst: lst[1:] + lst.pop(0)

(a) (1.0 pt) >>> f1(3, -5)

(b) (1.0 pt) >>> f1(-4, 7)

(c) (1.5 pt) >>> f2(print('a'), 10 % 3)

(d) (1.5 pt) >>> f3([[10, 20], 30, 40])



Exam generated for 3

2. (6.0 points) Soft Drinks

Fill in the blanks to complete the environment diagram. All the code used is in the box to the right, and the
code runs to completion with no errors. Some arrows have been removed from the diagram. You may wish to
draw in those arrows, but it is not required.

(a) (1.0 pt) What is the parent frame of the mountain function in the f2 frame?

(b) (1.0 pt) What is the value of dew in the f2 frame?

(c) (1.0 pt) What is the return value of the f2 frame?

(d) (1.0 pt) What is the return value of the f3 frame?

(e) (2.0 pt) What is the value of pepper in the global frame when the environment diagram is complete?



Exam generated for 4

3. (6.0 points) BeReal

BeReal is a popular new social media app that sends alerts to users at a certain time in the day. Users then
have 2 minutes after the alert to post a picture, otherwise their post will be marked as late.

Complete bereal that takes in an alert time and returns a function capture. capture takes in a post time
and returns three possible strings:

• "on time" if the post is less than or equal to 2 minutes of the alert.
• "x minutes late" if the post is less than an hour late.
• "x hours late" if the post is greater than or equal to an hour late, where x is rounded down to the
nearest hour.

The alert and post arguments are both integer values representing the time of day in minutes after midnight
(e.g. 10 AM is 600 minutes), and the post time will never be earlier than the alert time. (str(x) converts a
number x to a string.)

def bereal(alert):
"""
>>> today = bereal(600) # 10:00 AM
>>> today(601) # 10:01 AM
'on time'
>>> today(602) # 10:02 AM
'on time'
>>> today(630) # 10:30 AM
'30 minutes late'
>>> today(730) # 12:10 PM
'2 hours late'
"""
def capture(post):

difference = ________________
if __________________:

return str(______________) + ' hours late'
elif ________________:

return str(_______________) + ' minutes late'
else:

return 'on time'
________________________

(a) (6.0 pt)

def bereal(alert):
def capture(post):

difference = _______________________________________________

if ________________________________________________________:

return str(_________________________) + ’ hours late’

elif _______________________________________________________:

return str(_________________________) + ’ minutes late’
else:

return ’on time’

_______________________________________________________________________



Exam generated for 5

4. (6.0 points) Musical Chairs

A group of people sitting in a circle of chairs can be represented as a list of strings. We’ll call this representation
a “chair list” and look at an example of a “chair list” named people.

>>> people = ["Bob", "Alice", "Jane"]

There are len(people) total chairs in the circle and they are labeled 0, 1, ..., len(people) - 1 in the
clockwise direction. The i-th element in the list people is the name of the person in the chair labeled with
integer i.

(a) (2.0 pt) Complete the function shift_right which takes in a “chair list” named people and returns a
new “chair list” in which every person moves to the chair directly to their right. The original list people
should not be modified.

def shift_right(people):
"""
>>> p0 = ["Bob", "Alice", "Jane"]
>>> p1 = shift_right(p0)
>>> p0
['Bob', 'Alice', 'Jane'] # p0 remains unchanged
>>> p1
['Jane', 'Bob', 'Alice']
>>> p2 = shift_right(p1)
>>> p2
['Alice', 'Jane', 'Bob']
"""
return ____________________________________

return ____________________________________________________________



Exam generated for 6

(b) (4.0 pt) Complete the function shift_right_n_times which takes in a “chair list” named people and an
integer n and returns a new “chair list” in which every person moves n chairs to their right. The original
list people should not be modified.

def shift_right_n_times(people, n):
"""
>>> shift_right_n_times(['Bob', 'Alice', 'Jane'], 2)
['Alice', 'Jane', 'Bob']
>>> shift_right_n_times(['W', 'X', 'Y', 'Z'], 8)
['W', 'X', 'Y', 'Z']
"""

In your solution, you may assume that shift_right correctly. You may not need to use all the lines
provided. (You may use any valid Python you have learned in CS88 in your solution.)

def shift_right_n_times(people, n):

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________

_________________________________________________________________________



Exam generated for 7

5. (6.0 points) Aggregate

Complete the aggregate function, which aggregates certain digits of n from right to left using the two argument
function func. aggregate only aggregates a digit d if cond(d) evaluates to True and d is not consecutively
repeated. For example, if you have n = 222 and the digit 2 satisfies cond, you will only aggregate using one of
the three consecutive 2’s. Finally, the first time func is called on a digit of n, pass base as one of the arguments.
Note that the order in which arguments are passed to func does not matter, i.e. func(x, y) equals func(y,
x).

def aggregate(n, func, cond, base):
"""
>>> from operator import add, mul
>>> add_times_three = lambda x, y: (x + y) * 3
>>> is_even = lambda x: x % 2 == 0
>>> aggregate(122, add_times_three, is_even, 0) # (0 + 2) * 3
6
>>> aggregate(4212, add, is_even, 0) # (((0 + 2) + 2) + 4)
8
>>> aggregate(222, add, is_even, 1) # 1 + 2
3
>>> aggregate(111, mul, is_even, 2) # 2
2
"""
result = base
while _________________________________________:

digit = ___________________________________
n = _______________________________________
if _________________ and _______________________:

_______________________________________
return result

(a) (6.0 pt)

def aggregate(n, func, cond, base):
result = base

while ________________________________________________________:

digit = ___________________________________________________

n = _______________________________________________________

if _________________________ and _________________________:

_______________________________________________________
return result



Exam generated for 8

6. (6.0 points) Forming Teams

Given a list of captain names captains, a list of player names players, and a two argument function
are_compatible, the form_teams method returns a dictionary of compatible teams, where the key is the team
captain and the value is a list of players on each team.

Compatibility between captains and players is determined by the are_compatible function, which returns True
if a captain and a player are compatible and False otherwise. The order in which arguments are passed to this
function does not matter, i.e. are_compatible(p, c) will return the same output as are_compatible(c, p).

Players are added to the first captain they are compatible with. If players cannot be paired with any of the
captains, they become a captain of their own solo team.

The current code has 3 different errors which you need to find!

def form_teams(captains, players, are_compatible):
"""
>>> same_len = lambda x, y: len(x) == len(y)
>>> captains = ['bob', 'mary', 'tim']
>>> players = ['adam', 'kit', 'katie', 'margaret', 'tony', 'dory']
>>> form_teams(captains, players, same_len)
{'bob': ['kit'], 'mary': ['adam', 'tony', 'dory'], 'tim': [], 'katie': [], 'margaret': []}
>>> same_first_or_last_char = lambda x, y: x[0] == y[0] or x[-1] == y[-1]
>>> form_teams(captains, players, same_first_or_last_char)
{'bob': [], 'mary': ['margaret', 'tony', 'dory'], 'tim': ['adam'], 'kit': [], 'katie': []}
"""

1. teams = {}
2. for c in captains:
3. teams[c] = []
4. for p in players:
5. added_to_team = False
6. for c in captains:
7. if are_compatible(p, c):
8. teams[c] = [p]
9. added_to_team = True
10. else:
11. added_to_team = False
12. if not added_to_team:
13. teams[p] = []
14. return teams

In each box, identify and fix each of the errors. Specify the line number(s) you would modify or delete for each
error, and in the case of modification, give the modified line of code. You may not add new lines of code.

Use the following formats for your answer:

• To delete a line: delete line #

• To modify a line: line #: new line of code

(a) (2.0 pt)



Exam generated for 9

(b) (2.0 pt)

(c) (2.0 pt)



Exam generated for 10

7. (5.0 points) Closet Overhaul

You’ve designed a closet abstract data type to help you organize your wardrobe.

A closet contains two things:

• owner: the name of the closet owner represented as a string

• clothes: the collection of clothes in the closet represented as a dictionary, where the key is the clothing
item name and the value is the number of times the clothing item has been worn.

The make_closet constructor takes in owner (a string) and clothes (a list of strings representing clothing
items) and returns a closet ADT.

Given this, you’ve implemented the abstract data type as follows:

def make_closet(owner, clothes):
""" Create and returns a new closet. """
clothes_dict = {}
for item in clothes:

clothes_dict[item] = 0
return (owner, clothes_dict)

def get_owner(closet):
""" Returns the owner of the closet """
return closet[0]

def get_clothes(closet):
""" Returns a dictionary of the clothes in the closet """
return closet[1]

Given the closet ADT, implement the functions wear_clothes and favorite_clothing_item. You may not
need all the lines provided, and you may need to change the indentation for some lines.



Exam generated for 11

(a) (3.0 pt) Implement wear_clothes, which takes a closet closet and a list of clothing items clothes_worn,
and increments the number of times each item is worn by 1. If the clothing item specified does not already
exist in the closet, add it to the closet.

def wear_clothes(closet, clothes_worn):
""" Updates the number of times each clothing item is worn.
>>> adam_closet = make_closet("adam", ["polo", "tie", "shorts"])
>>> wear_clothes(adam_closet, ["shorts", "tie", "shorts"])
>>> get_clothes(adam_closet)
{'polo': 0, 'tie': 1, 'shorts': 2}
>>> wear_clothes(adam_closet, ["polo", "scarf"])
>>> get_clothes(adam_closet)
{'polo': 1, 'tie': 1, 'shorts': 2, 'scarf': 1}
"""

def wear_clothes(closet, clothes_worn):

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

__________________________________________________________________

(b) (4.0 pt) Implement favorite_clothing_item, which takes in a closet closet and returns the name of
the most frequently worn clothing item. Assume there are no ties.

def favorite_clothing_item(closet):
""" Finds the most frequently worn clothing item in a closet
>>> adam_closet = make_closet("adam", ["polo", "tie", "shorts"])
>>> wear_clothes(adam_closet, ["shorts", "tie", "shorts"])
>>> favorite_clothing_item(adam_closet)
'shorts'
>>> wear_clothes(adam_closet, ["tie", "polo", "polo", "scarf", "polo"])
>>> favorite_clothing_item(adam_closet)
'polo'
"""
return max(_______, key = _______)

def favorite_clothing_item(closet):

return max(_________________________________________________________,

key = ___________________________________________________)



Exam generated for 12

8. (6.0 points) One At A Time

(a) (6.0 pt) Implement the function add_to_digit which takes in two positive integers, n and x, and returns
a new number that is the result of adding x to each digit of n. If the sum of x and a digit of n is more
than 9, let the new digit be the rightmost digit of the sum.

def add_to_digit(n, x):
"""
>>> add_to_digit(9, 5) # 9 + 5 = 14
4
>>> add_to_digit(123, 5) # 1 + 5 = 6, 2 + 5 = 7, 3 + 5 = 8
678
>>> add_to_digit(238, 5) # 2 + 5 = 7, 3 + 5 = 8, 8 + 5 = 13
783
"""
new_digit = _____________________________________
if _____________________________________:

return ____________________________
return _______________________ * 10 + ___________________________

def add_to_digit(n, x):

new_digit = ___________________________________________________________________

if ___________________________________________________________________________:

return ____________________________________________________________________

return ______________________________ * 10 + __________________________________



Exam generated for 13

9. (8.0 points) Cart Tracker

You are the owner of several “smart” grocery stores. In order to model the supply of your shopping carts,
complete the class CartTracker which allows you to keep track of a line of shopping carts at different stores!

A cart is represented as a Cart object, using the Cart class defined below.

class Cart:
counter = 0
def __init__(self, store):

self.store = store # name of store where this cart is located
self.id = Cart.counter
Cart.counter += 1

class CartTracker:
"""
>>> joes_store = CartTracker(3, 'Joes') # Carts 0 1 2
>>> sally = joes_store.checkout_cart()
>>> beth = joes_store.checkout_cart()
>>> print(sally.id, beth.id)
2 1
>>> joes_store.add_cart(sally)
>>> anna = joes_store.checkout_cart()
>>> elsa = joes_store.checkout_cart()
>>> print(anna.id, elsa.id)
2 0
>>> joes_store.checkout_cart()
-1
>>> ralphs_store = CartTracker(4, 'Ralphs') # Carts 3 4 5 6
>>> CartTracker.transfer_carts(ralphs_store, joes_store, 2)
>>> noah = joes_store.checkout_cart()
>>> reese = ralphs_store.checkout_cart()
>>> print(noah.id, reese.id)
5 4
>>> noah.store
'Joes'
"""
def __init__(self, num_carts, store):

self.carts = _____________________________________________
self.store = _____________________________________________

def checkout_cart(self):
if _____________________________________________:

return -1
return _____________________________________________

def add_cart(self, cart):
_____________________________________________

def transfer_carts(tracker1, tracker2, n):
for i in range(__________________________________):

curr_cart = tracker1.___________________________________
curr_cart.store = ______________________________________
_____________________________________________



Exam generated for 14

(a) (2.0 pt) First complete the __init__ method which takes in an integer num_carts and assigns the instance
attribute carts to a list of Cart objects of length num_carts, representing a line of shopping carts.

The id attributes of the Cart objects in the list should be increasing from left to right. For example if
num_carts is 3, then the list might look like [<Cart 0>, <Cart 1>, <Cart 2>] where the integers 0, 1,
2 are the id values for each cart respectively. Crucially the rightmost element, <Cart 2>, is the cart at
the “front” of the line.

def __init__(self, num_carts, store):

self.carts = _____________________________________________

self.store = _____________________________________________

(b) (3.0 pt) Next, complete the following two methods so customers can checkout and put back shopping
carts:

• checkout_cart: returns -1 if there are no carts available and otherwise removes the Cart object at
the front of the line and returns it.

• add_cart: takes in a Cart object called cart and places it at the front of the shopping cart line (the
right end of the list).

def checkout_cart(self):

if _________________________________________________:
return -1

return _____________________________________________

def add_cart(self, cart):

_____________________________________________________

(c) (3.0 pt) Complete the class method transfer_carts which takes in two CartTracker objects representing
different stores, tracker1 and tracker2, and an integer n. transfer_carts removes n carts from tracker1
by checking them out and adds them to tracker2 in the same order they were checked out. Each transferred
Cart object’s store attribute should be updated since the cart now belongs to a new store.

def transfer_carts(tracker1, tracker2, n):

for i in range(__________________________________):

curr_cart = tracker1.___________________________________

curr_cart.store = ______________________________________

_______________________________________________________



Exam generated for 15

No more questions.


