
Welcome to Data C88C!

Lecture 02: Functions
Tuesday, June 24th, 2025
Week 1
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Lab starts today! "Lab00"
○ Lab Zoom links here: [link]
○ Due: Sun June 29th, 11:59 PM PST

● HW01 released today! [link]
○ Due: Sun June 29th, 11:59 PM PST
○ Tip: ALL assignments this semester are due at 11:59 PM PST

● Submit both Lab and HW on Gradescope
○ Autograders

● Reminder: watch YouTube video BEFORE lecture!
○ See course website for video link

Important: watch these
videos before lecture to

maximize learning!

https://edstem.org/us/courses/79702/discussion/6788342
https://edstem.org/us/courses/79702/discussion/6789378

Lecture Overview

● Functions
● Environment Diagrams ("V1")
● Print and None
● Big Demo: Small Expressions

Assignment Statements

Assignment Statements

The expression (right) is evaluated, and its value is assigned to the name (left).
>>> x = 2
>>> y = x + 1
>>> y
3
>>> x = 5
>>> x
5
>>> y
3

5

x = 1 + 2

x - 1 = 2

1 + 2 = x

assigns the value of the expression on the rightAn assignment statement

to the name on the left

Note: we can also assign names to functions, not just
numbers!
[Demo 02.py:Demo00]

Python Tutor: max vs pow visualized

>>> max(2, 10)
10
>>> pow(2, 10)
1024
>>> max = pow
>>> pow(2, 10)
1024
>>> pow = max
>>> pow(2, 10)
1024
>>> max = pow
>>> pow(2, 10)
1024

Python Tutor: https://pythontutor.com/cp/composingprograms.html#mode=edit
Very nice web tool for visualizing Python
[Demo] pow vs max example: [link]

https://pythontutor.com/cp/composingprograms.html#mode=edit
https://pythontutor.com/cp/composingprograms.html#code=%23%20%28setup%29%20tell%20python%20tutor%20to%20show%20initial%20max/pow%20values%0Amax%20%3D%20max%0Apow%20%3D%20pow%0Aprint%28max%282,%2010%29%29%0Aprint%28pow%282,%2010%29%29%0Amax%20%3D%20pow%0Aprint%28pow%282,%2010%29%29%0Apow%20%3D%20max%0Aprint%28pow%282,%2010%29%29%20%20%23%20tricky%3A%20is%20this%2010,%20or%201024%3F%0Amax%20%3D%20pow%0Aprint%28pow%282,%2010%29%29%0A&cumulative=true&mode=edit&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Name lookup in user-defined functions

x = 2

def g(y):
 x = 2 * y
 return x + 1

Observation: there are multiple `x` names here! How
do we know which `x` refers to which value?

Question: what does `g(x)` return?

Answer: 5

The `x` in `return x + 1` is different than the `x` in the global scope (`x = 2`).
Sound hand-wavy? Let's formalize this a little more, using a tool called "Environment Diagrams"

Environment Diagrams

What are Environment Diagrams?

● Environment diagrams are a helpful way of visualizing how Python looks up variable values during
execution

● Sort of a "simulation" of the Python interpreter
● Tip: Python Tutor [link] will step-by-step draw the environment diagrams for any Python code you give

it! Super useful for studying.

https://pythontutor.com/cp/composingprograms.html#mode=edit

Calling User-Defined Functions

Procedure for calling/applying user-defined functions (version 1):

1. Add a local frame, forming a new environment

2. Bind the function's formal parameters to its arguments in that frame

3. Execute the body of the function in that new environment

Local frame

Original name of function
called

Formal parameter bound to
argument Return value

(not a binding!)

Built-in function

User-defined
function

1
0

http://pythontutor.com/composingprograms.html#code=from%20operator%20import%20mul%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Asquare%28-2%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Frames & Environments

Frame: Holds name-value bindings; looks like a box; no repeated names allowed!

Global frame: The frame with built-in names (min, pow, etc.)

Environment: A sequence of frames that always ends with the global frame

Lookup: Find the value for a name by looking in each frame of an environment

A name (which is a type of expression) such as x is evaluated by looking it up

1
1

So far, the "sequence of frames"
is always very short (length 2):
the function's frame, followed by
the global frame.

But, later when we add nested
(aka inner) functions, we will
have longer frame sequences!

A Sequence of Frames

An environment is a sequence of frames.

A name evaluates to the value bound to that name in the earliest frame of the
current environment in which that name is found.

1
2

...

f1

...

f2

...

Global Frame

ea
rli

er
la

te
r

The global frame is always
the last place you look

Even though all three frames are in the same diagram, they might not be
in the same environment

[Demo: PythonTutor g(y) [link]]

https://pythontutor.com/cp/composingprograms.html#code=def%20g%28y%29%3A%0A%20%20%20%20x%20%3D%202%20*%20y%0A%20%20%20%20return%20x%20%2B%201%0Ax%20%3D%202%0Aprint%28g%28x%29%29%0Aprint%28g%283%20*%20x%29%20%2B%203%29%0Aprint%28x%29%0Ay%20%3D%203%0Aprint%28g%28y%29%29%0Aprint%28y%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Frames & Environments

Why organize information this way?

• Local context before global context

• Calling or returning changes the local context

• Assignment within a function's local frame doesn't affect other frames

1
3

[Demo: Python Tutor [link]]

Question: What
Would Python Print?

Answer: 4

Question: What
Would Python Print?

Answer: 9
[Demo: Python Tutor [link]]

https://pythontutor.com/cp/composingprograms.html#code=from%20operator%20import%20mul%0A%0Adef%20square%28square%29%3A%0A%20%20%20%20return%20mul%28square,%20square%29%0Aprint%28square%283%29%29%0A&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D
https://pythontutor.com/cp/composingprograms.html#code=from%20operator%20import%20mul%0A%0Adef%20square%28x%29%3A%0A%20%20%20%20return%20mul%28x,%20x%29%0Aprint%28square%28-2%29%29&cumulative=true&curInstr=6&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Multiple Assignment

Just executed

Multiple Assignment

Execution rule for assignment statements:

1. Evaluate all expressions to the right of = from left to right.

2. Bind all names to the left of = to those resulting values in the current frame.

1
5

Just executed

Next to execute

http://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Ab%20%3D%202%0Ab,%20a%20%3D%20a%20%2B%20b,%20b&cumulative=false&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

3 2

b = 3
a = 2

Print and None

(Demo: 02.py:Demo01)

Print and None

● print() function is "special" in that it has a
side-effect
○ Side-effect: outputs something to the

screen
○ Return value: None

● In Python, `None` is a special value that
means the "nothing" or "empty" value
○ Similar in spirit to NULL/nullpointer in other

languages

Image by Freeimages.com
https://www.freeimages.com/download/computer-printer-clip-art-5347124

print("Hello World")

Hello
World

Side
Effect

Return
Value

None

More precisely: issue commands to
OS to render text "Hello World" to

the screen

Tip: be sure that you fully understand the difference between
function return values and `print()`!

Pro Tip: this often shows up in exams!

http://freeimages.com
https://www.freeimages.com/download/computer-printer-clip-art-5347124

Small Expressions

Problem Definition

Imagine you can call only the following three functions:

- f(x): decrement an integer x to get x-1

- g(x): increment then double an integer x to get 2*(x+1)

- h(x, y): Concatenates the digits of two different positive integers x and y. For
example, h(789, 12) evaluates to 78912 and h(12, 789) evaluates to 12789.

Definition: A small expression is a call expression that contains only f, g, h,
the number 5, and parentheses. All of these can be repeated. For example,
h(g(5), f(f(5))) is a small expression that evaluates to 103.

What's the shortest small expression you can find that evaluates to 2025?

19

How do you get to 2025?

5➡4➡10➡9➡20
5➡4➡3➡2

5

Fewest calls?
Shortest length when written?

Effective problem solving:
• Understand the problem
• Come up with ideas
• Turn those ideas into solutions

h(g(f(g(f(5)))),h(f(f(f(5))),5))

Search

20

A common strategy: try a bunch of options to see which is best ("exhaustive/brute-force search")

Computer programs can evaluate many alternatives by repeating simple operations (Fortunately, computers are fast!)

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

21

f(f(f(5))) -> 2
g(f(f(5))) -> 8
f(g(f(5))) -> 9
g(g(f(5))) -> 22
f(f(g(5))) -> 10
g(f(g(5))) -> 24
f(g(g(5))) -> 25
g(g(g(5))) -> 54

h(5,f(f(5))) -> 53
h(5,g(f(5))) -> 510
h(5,f(g(5))) -> 511
h(5,g(g(5))) -> 526
h(5,f(h(5,5))) -> 554
h(5,g(h(5,5))) -> 5112
h(5,h(5,f(5))) -> 554
h(5,h(5,g(5))) -> 5512
h(5,h(5,h(5,5))) -> 5555
h(5,h(f(5),5)) -> 545
h(5,h(g(5),5)) -> 5125
h(5,h(h(5,5),5)) -> 5555
h(f(5),f(5)) -> 44
h(f(5),g(5)) -> 412
h(f(5),h(5,5)) -> 455
…

f(f(h(5,5))) -> 53
g(f(h(5,5))) -> 110
f(g(h(5,5))) -> 111
g(g(h(5,5))) -> 226
f(h(5,f(5))) -> 53
g(h(5,f(5))) -> 110
f(h(5,g(5))) -> 511
g(h(5,g(5))) -> 1026
f(h(5,h(5,5))) -> 554
g(h(5,h(5,5))) -> 1112
f(h(f(5),5)) -> 44
g(h(f(5),5)) -> 92
f(h(g(5),5)) -> 124
g(h(g(5),5)) -> 252
f(h(h(5,5),5)) -> 554
g(h(h(5,5),5)) -> 1112
…

Reminder: f(x) decrements; g(x) increments then doubles; h(x, y) concatenates

h(g(5),f(5)) -> 124
h(g(5),g(5)) -> 1212
h(g(5),h(5,5)) -> 1255
h(h(5,5),f(5)) -> 554
h(h(5,5),g(5)) -> 5512
h(h(5,5),h(5,5)) -> 5555
h(f(f(5)),5) -> 35
h(g(f(5)),5) -> 105
h(f(g(5)),5) -> 115
h(g(g(5)),5) -> 265
h(f(h(5,5)),5) -> 545
h(g(h(5,5)),5) -> 1125
h(h(5,f(5)),5) -> 545
h(h(5,g(5)),5) -> 5125
h(h(5,h(5,5)),5) -> 5555
h(h(f(5),5),5) -> 455
h(h(g(5),5),5) -> 1255
h(h(h(5,5),5),5) -> 5555
…

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.
Filter for just the attempts that result in desired output: 2025.

22

f(g(h(f(f(g(5))),g(5)))) -> 2025 has 7 calls

Reminder: f(x) decrements; g(x) increments then doubles; h(x, y) concatenates

f(g(h(g(f(5)),g(5)))) -> 2025 has 6 calls

2025
5➡4➡10➡9➡2

05➡4➡3➡
2

5

f(g(g(f(g(g(h(g(5),5))))))) -> 2025 has 8 calls
f(g(g(h(g(g(f(g(5)))),5)))) -> 2025 has 8 calls
f(h(g(f(g(f(5)))),g(g(5)))) -> 2025 has 8 calls
h(g(f(g(f(5)))),f(g(g(5)))) -> 2025 has 8 calls
h(g(g(f(g(g(f(g(5))))))),5) -> 2025 has 8 calls
h(g(g(h(f(5),f(g(f(5)))))),5) -> 2025 has 8 calls
h(g(f(g(f(5)))),h(f(f(f(5))),5)) -> 2025 has 9 calls

125➡252➡506➡505➡1012➡2026➡202
5

5➡12➡11➡1
0

5➡1
2

5➡4➡1
0

5➡1
2

A Computational Approach

Try all the small expressions with 3 function calls, then 4 calls, then 5 calls, etc.

23

def smalls(n):
 if n == 0:
 return [Number(5)]
 else:
 results = []
 for operand in smalls(n-1):
 results.append(Call(f, [operand]))
 results.append(Call(g, [operand]))
 for k in range(n):
 for first in smalls(k):
 for second in smalls(n-k-1):
 if first.value > 0 and second.value > 0:
 results.append(Call(h, [first, second]))
 return results

def sol():
 for i in range(9):
 r = [e for e in smalls(i) if e.value == 2025]
 for e in r:
 print(e, '->', e.value, 'has', e.calls(), 'calls')

def f(x):
 return x - 1
def g(x):
 return 2 * (x + 1)
def h(x, y):
 return int(str(x) + str(y))

class Number:
 def __init__(self, value):
 self.value = value

 def __str__(self):
 return str(self.value)

 def calls(self):
 return 0

class Call:
 """A call expression."""
 def __init__(self, f, operands):
 self.f = f
 self.operands = operands
 self.value = f(*[e.value for e in operands])

 def __str__(self):
 return f'{self.f.__name__}({",".join(map(str, self.operands))})'

 def calls(self):
 return 1 + sum(o.calls() for o in self.operands)

Functions

Containers

Objects

Representation

Sequences

Mutability

Recursion

Tree
Recursion

Control

Higher-Order Functions
Note: you aren't expected

to understand this slide
yet. But, by the Midterm

you will be able to!

(Demo: 02.py:Demo02)

