Welcome to Data C88C!

Lecture 03: Control

Wednesday, June 25th, 2025

Week 1

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e Lab00
o Due: Sun June 29th, 11:59 PM PST

o HWO1
o Due: Sun June 29th, 11:59 PM PST

¢ Reminder: watch YouTube video BEFORE lecture!
o See course website for video link

Calendar
Lab & Discussion Homework &
Week Date Lecture Textbook : !
Links Project
M Disc 00: Getti
on Welcome iISC etting
6/23 Started

Disc 01: Functions

Important: WatCh these ﬂ Functions HW 01: Functions
: = Lab 00: Getting
videos before lectu re' to e
maximize learning! o — T
1 6/95 [:]Videos I[:]Ch- = l Environment

Diagrams

| ecture Overview

e Control ("if" statements)
e \While loops

Print and None

(Demo)

Example: Print Then Return

Question: which of these functions first prints, then returns, the value of f(x)?

def h1(x): def h2(x): def h3(x):
return print(f(x)) print(f(x)) y = f(x)
return f(x) print(y)
return y
(A) (B) (C)
Answer: C

Question: what is a function 'f where (B) and (C) would have different behavior?

Answer: f = print .

def h2(x): >>> h2(42) def h3(x): >>> h3(42)
print(f(x)) 42 y=f(x) [42
Breaking down the output, return f(x) None print(y) ﬁ> None
color coded to match which ﬁ> 49 return y

part of the code generated it

Control

Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may not be evaluated.

x=10 X=1 X=-1
if x> 2:
orint('big") Two separate (unrelated) big ositive
ifx >0 conditional statements positive P
print('positive’)
if x > 2 One statement with two clauses:
AHhig! if and elif
print(t.>|g) big less big
elif x > 0: Only one body can ever be
print(‘less big’) executed
X g 2:, - One statement with three
print('big’) P
. clauses: if, elif, else _ _
elif x > 0: big less big not pos
orint(‘less big') Only one body can ever be
else: executed

print(‘not pos')

While loops

e \While loops let you repeat some code multiple times

def while_ex00():
orint(3)

orint(2)

orint (1)
orint("blast off!")

>>> while_ex00()
3

2

1

blast off!

def while_ex01():

1 = 3
while 1 > 0:
print(1)

i =1 -1 # shorthand:
print("blast off!")

>>> while_ex00()
3

2

1

blast off!

_i

While Statements

While statements contain statements that are repeated as long as some condition is true.

Important considerations:

 How many separate nhames are needed and what do they mean?

 The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

* Once the while condition is evaluated, the entire body is executed.

[Names and their initial values 1

~ i, total = 0, © | - -
, , The while condition is evaluated before each iteration
while 1 < 3:)
+

e o« e
A name that appears in the while condition is T1 = 1

1

changing total

total + 1 { Executed even when is set to 3

While loops: Caution

def while_ex02():

1 = 3
while 1 > 0:
print(1)

print("blast off!")

>>> while_ex02()

wWwwwwwwwwwwww

Question: What Will Python Do?

Answer: print 3 forever! This is known as an "infinite
loop"”. Very common bug.

Neat way to heat up your room though!

Tip: if you suspect your code is infinite-looping
(eg runs for a long time without terminating), you
can interrupt your program from the terminal by

pressing <CTRL> + C (at the same time)

(Demo: 03.py:Demo00)

Example: Prime Factorization

Example: Prime Factorization

Each positive integer n has a unique set of prime factors whose product is n ("Fundamental Theorem of Arithmetic”)

272
3
5

1

—_ A O 00 :

=27
=3
0=2*
1="1
2=2%2"3

Challenge: how to calculate the prime factors of a number?

One approach: Find the smallest prime factor of n, divide by it, then repeat on the remaining integer

Question: how do we

Example: 858 =2%429 =2+3*143 =2*3*11*13 =2+*3*11*13*1 know thatwe are
—~ —~ —~ ~~ ~~ done?
divisible divisible divisible divisible
by 2 by 3 by 1 by 13

Answer: when the
remaining integer is 1

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

Advice: problem solving and coding

e \When faced with a coding problem: resist the urge to start writing code immediately! My advice:
e Fully understand the problem statement.
o You'd be surprised how often people miss this step
e Come up with an approach that solves the problem.
o Tip: work out (manually!) a few problem instances. Paper + pencil works wonders!
o From these toy/small examples, you can flesh out the "general"” approach
e Then, finally: write the code that implements your approach.
e \What you don't want to do:
o Dive straight into coding, and flail around because you don't know what the correct approach should be

Note: this is advice | generally give for technical coding
interviews, but also applies to C88C!

Example: Prime Factorization

Question: how do we
Challenge: how to calculate the prime factors of a number? know that we are

done?
One approach: Find the smallest factor of n, divide by it, then repeat on the remaining integer

Answer: when the

Example: 858 =2 * 429 =2 * 3 * 4143 =2*3%11*13 =2%3*%11*13* 14 remaining |ntegerls1
e v ~~ ~~ “~
divisible divisible divisible divisible
by 2 by 3 by 11 by 13

Phew, | have my approach down! Next, I'll start
thinking about what my code should look like.

Approach: | want to repeatedly divide the "current active" integer via its smallest prime factor.

"repeatedly divide": whi Le loop
"current active" integer: local variable that is updated within the while loop
"smallest factor”: | should define a helper/utility function that computes this!

Helper function: smallest factor

‘smallest_factor(x) should, given an integer x’, return the smallest factor of x.

Examples:
How to implement this? How to do "is x divisible by k" In
10 = 2 * 5 Python?
>>> smallest_factor(10) Idea: start from k=2, and ask:
2 modulo % operator!
15 = 3 * 5 . C
k=2) is x divisible by k?
>>> smallest _factor (15) |(er2. return k g >>> 6 % 1
z 35 = 5 % 7 If No: increase Kk, and repeat 0
N _11 b fact ., >>> 6 % 2 6 % 2 =0means: 6 is
smallest_factor(35) (k=3) is x divisible by k? 0 divisible by 2
> - If Yes: return k >>> 6 % 3
13 = 13 (prime!) If No: increase k, and repeat 0
>>> smallest_factor(13) 5S> 6 % 4 6 % 4 =2 means: 6 is
13 5 } not divisible by 4, the
5SS 6 % 5 remainder is 2
1
>>> 6 % 6
©

(Demo: 03.py:Demo01)

