
Welcome to Data C88C!

Lecture 03: Control
Wednesday, June 25th, 2025
Week 1
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Lab00
○ Due: Sun June 29th, 11:59 PM PST

● HW01
○ Due: Sun June 29th, 11:59 PM PST

● Reminder: watch YouTube video BEFORE lecture!
○ See course website for video link

Important: watch these
videos before lecture to

maximize learning!

Lecture Overview

● Control ("if" statements)
● While loops

Print and None

(Demo)

Example: Print Then Return

Question: which of these functions first prints, then returns, the value of f(x)?

5

def h3(x):
 y = f(x)
 print(y)
 return y

def h2(x):
 print(f(x))
 return f(x)

def h1(x):
 return print(f(x))

(A) (B) (C)

Answer: C

Question: what is a function `f` where (B) and (C) would have different behavior?

Answer: `f = print`. >>> h2(42)
42
None
42

>>> h3(42)
42
None

def h2(x):
 print(f(x))
 return f(x)Breaking down the output,

color coded to match which
part of the code generated it

def h3(x):
 y = f(x)
 print(y)
 return y

Control

Conditional Statements

Conditional statements (often called "If" Statements) contain statements that may or may not be evaluated.

7

if x > 2:
 print('big')
if x > 0:
 print('positive')

if x > 2:
 print('big')
elif x > 0:
 print(‘less big’)

if x > 2:
 print('big')
elif x > 0:
 print(‘less big')
else:
 print(‘not pos')

Two separate (unrelated)
conditional statements

One statement with two clauses:
if and elif
Only one body can ever be
executed

One statement with three
clauses: if, elif, else
Only one body can ever be
executed

x=10 x=1 x=-1

big
positive

big

big

positive

less big

less big not pos

While loops

● While loops let you repeat some code multiple times

def while_ex00():
 print(3)
 print(2)
 print(1)
 print("blast off!")

>>> while_ex00()
3
2
1
blast off!

def while_ex01():
 i = 3
 while i > 0:
 print(i)
 i = i - 1 # shorthand: i -= 1
 print("blast off!")

>>> while_ex00()
3
2
1
blast off!

While Statements

While statements contain statements that are repeated as long as some condition is true.

Important considerations:

• How many separate names are needed and what do they mean?

• The while condition must eventually become a false value for the statement to end
(unless there is a return statement inside the while body).

• Once the while condition is evaluated, the entire body is executed.

9

Names and their initial values

 The while condition is evaluated before each iteration

A name that appears in the while condition is
changing Executed even when is set to 3

While loops: Caution

def while_ex02():
 i = 3
 while i > 0:
 print(i)
 print("blast off!")

Question: What Will Python Do?

Answer: print 3 forever! This is known as an "infinite
loop". Very common bug.

Neat way to heat up your room though!

Tip: if you suspect your code is infinite-looping
(eg runs for a long time without terminating), you
can interrupt your program from the terminal by

pressing <CTRL> + C (at the same time)

(Demo: 03.py:Demo00)

>>> while_ex02()
3
3
3
3
3
3
3
3
3
3
3
3
3
...

Example: Prime Factorization

Example: Prime Factorization
Each positive integer n has a unique set of prime factors whose product is n ("Fundamental Theorem of Arithmetic")

...
8 = 2 * 2 * 2
9 = 3 * 3
10 = 2 * 5
11 = 11
12 = 2 * 2 * 3
...

Challenge: how to calculate the prime factors of a number?

One approach: Find the smallest prime factor of n, divide by it, then repeat on the remaining integer

1
2

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13Example:
Question: how do we

know that we are
done?

Answer: when the
remaining integer is 1

divisible
by 2

divisible
by 3

divisible
by 11

divisible
by 13

= 2 * 3 * 11 * 13 * 1

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

Advice: problem solving and coding

● When faced with a coding problem: resist the urge to start writing code immediately! My advice:
● Fully understand the problem statement.

○ You'd be surprised how often people miss this step
● Come up with an approach that solves the problem.

○ Tip: work out (manually!) a few problem instances. Paper + pencil works wonders!
○ From these toy/small examples, you can flesh out the "general" approach

● Then, finally: write the code that implements your approach.
● What you don't want to do:

○ Dive straight into coding, and flail around because you don't know what the correct approach should be

Note: this is advice I generally give for technical coding
interviews, but also applies to C88C!

Example: Prime Factorization
Challenge: how to calculate the prime factors of a number?

One approach: Find the smallest factor of n, divide by it, then repeat on the remaining integer

1
4

858 = 2 * 429 = 2 * 3 * 143 = 2 * 3 * 11 * 13Example:

Question: how do we
know that we are

done?

Answer: when the
remaining integer is 1

divisible
by 2

divisible
by 3

divisible
by 11

divisible
by 13

= 2 * 3 * 11 * 13 * 1

Approach: I want to repeatedly divide the "current active" integer via its smallest prime factor.

"repeatedly divide": while loop
"current active" integer: local variable that is updated within the while loop
"smallest factor": I should define a helper/utility function that computes this!

Phew, I have my approach down! Next, I'll start
thinking about what my code should look like.

Helper function: smallest_factor

`smallest_factor(x)` should, given an integer `x`, return the smallest factor of x.

Examples:

10 = 2 * 5
>>> smallest_factor(10)
2
15 = 3 * 5
>>> smallest_factor(15)
3
35 = 5 * 7
>>> smallest_factor(35)
5
13 = 13 (prime!)
>>> smallest_factor(13)
13

How to implement this?

Idea: start from k=2, and ask:

(k=2) is x divisible by k?
If Yes: return k
If No: increase k, and repeat

(k=3) is x divisible by k?
If Yes: return k
If No: increase k, and repeat
...

How to do "is x divisible by k" in
Python?

modulo % operator!

>>> 6 % 1
0
>>> 6 % 2
0
>>> 6 % 3
0
>>> 6 % 4
2
>>> 6 % 5
1
>>> 6 % 6
0

6 % 2 = 0 means: 6 is
divisible by 2

6 % 4 = 2 means: 6 is
not divisible by 4, the

remainder is 2

(Demo: 03.py:Demo01)

