
Welcome to Data C88C!

Lecture 04: Higher-Order Functions
Thursday, June 26th, 2025
Week 1
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Lab01 + Lab02 released!

○ Due: Tues July 1st, 11:59 PM PST

● HW02 released!

○ Due: Tues July 1st, 11:59 PM PST

● Lab00
○ Due: Sun June 29th, 11:59 PM PST

● HW01
○ Due: Sun June 29th, 11:59 PM PST

● Reminder: watch YouTube video BEFORE lecture!
○ See course website for video link

Important: watch these
videos before lecture to

maximize learning!

Lecture Overview

● Designing functions
• Case study: `same_length()`

● Higher-order functions
● Case studies:

• Summation
• Twenty-one game ("Nim")

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might possibly take as
arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and
output.

5

def square(x):
 """Return X * X."""

x is a number

square returns a non-negative
real number

square returns the square of x

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

6

Don’t repeat yourself (DRY): Implement a process just once, but execute it many times

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

Answer: use the `%, //` operators with a
while-loop

Case study: same_length()

(Demo: 04.py:Demo00)

>>> same_length(50, 70)
True
>>> same_length(50, 100)
False
>>> same_length(1000, 100000)
False

Question: what should our approach to coding
this up be?

Answer: here's one way:
(1) Count the number of digits of the first input
(2) Count the number of digits of the second input
(3) Return True if the number of digits is the same,

False otherwise.

Question: how to count the number of digits of
an integer?

Use % to fetch the right-most digit
>>> 125 % 10
5
Use // to discard the right-most digit
>>> 125 // 10
12

Question: are there any opportunities to define any
useful helper functions here?

Answer: (1) and (2) do the same exact thing, let's
define a helper function that counts number of digits!

`same_length(a, b)` should return True if integers
`a, b` contain the same number of digits:

Higher-Order Functions

Definition: Higher-order function

● A higher-order function ("HOF") is a function that either accepts a function(s) as input
○ OR: returns a function(s) as an output

● Not all programming languages support HOF's
○ Languages that do are said to treat functions as "first class objects"

def square(x):
 return x * x

def call_fn(fn, x):
 return fn(x)

>>> call_fn(square, 2)
4

`call_fn()` accepts
a function `fn` as

input!

def create_square_fn():
 return square

>>> square_fn = create_square_fn()
>>> square_fn(3)
9

`create_square_fn()`
returns a function as

output!

Case study: summation + HOF's

● Recall: the summation function applies a function `f(x)` to a sequence of integers (1, 2, ..., N), and returns
the sums of all the values

f(x)

Identity
function

Cubed
function

(some math
expression)

Case study: summation + HOF's

One way to express these as Python functions
is to define a separate function for each.

def summation_a_identity(k_end):
 k = 1
 out_sum = 0
 while k <= k_end:
 out_sum += k
 k += 1
 return out_sum

def summation_b_cubed(k_end):
 k = 1
 out_sum = 0
 while k <= k_end:
 out_sum += k ** 3
 k += 1
 return out_sum

def summation_c_mystery_math(k_end):
 k = 1
 out_sum = 0
 while k <= k_end:
 out_sum += (8 / ((4 * k - 3) * (4 * k - 1)))
 k += 1
 return out_sum

Downside: lots of repeated code. There's
an abstraction opportunity here!

Summation Example

 Function of a single argument (not
called "term")

 A formal parameter that will be bound to
a function

The cube function is passed as an
argument value

1
2

0 + 1 + 8 + 27 + 64 + 125 The function bound to term gets
called here

Program Design

Modularity

Abstraction

Separation of Concerns

13

Twenty-One (aka "Nim") Rules

Two players alternate turns, on which they can add 1, 2, or 3 to the current total

The total starts at 0

The game end whenever the total is 21 or more

The last player to add to the total loses

1
4

(Demo: 04.py:Demo01)

Example game:

0 -> 2 -> 5 -> 6 -> 9 -> 12 -> ... -> 17 -> 19 -> 21

P1: 2 P2: 3 P1: 1 P2: 3 P1: 2 P2: 2

P2 wins!

Today, we'll explore an implementation of this
game that uses HOF's to represent strategies!

Functions as Return Values

(Demo: 04.py:Demo02)

Locally Defined Functions

A function that returns a
function

A def statement within another def
statement

The name add_three is bound to a
function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

16

Twenty-One Strategies

17

(Demo: 04.py:Demo03)

