
Welcome to Data C88C!

Lecture 09: Sequences
Monday, July 7th, 2025
Week 3
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● (Optional, extra credit) Weekly course surveys on Gradescope
• Out now: "Course Survey (Week 02) (optional, extra credit)"
• Help make the class better, for both this semester and future semesters!

● Due dates:
• Lab03, HW03 due date extended: now due tonight (July 7th, 11:59 PM PST) [link]
• Lab04, HW04: due Tues July 8th

● Project 01 "Maps" released tomorrow
• Group size: 2 (max)
• Please try to find a partner, but if you'd prefer to work alone, that's fine too

https://edstem.org/us/courses/79702/discussion/6809080

(Reminder) Announcement: Financial Aid Eligibility Survey

"In accordance with federal requirements established by the Department of Education, we need to verify that students are
participating in their courses. A survey has been sent to your students in DATA C88C, COMPSCI C88C to confirm their
eligibility to receive financial aid. Students will receive separate instructions to complete the 1-question assignment on
academic integrity.

You can learn more about the requirement on the Eligibility for Financial Aid at UC Berkeley page."

Students: please check your bCourses for an assignment that verifies your participation in classes. Required for
receiving financial aid. Read the above link for more info.

https://financialaid.berkeley.edu/how-aid-works/eligibility/

Lecture Overview

● Sequences
• Lists, str

● Range
● List comprehensions
● Slicing

Definition: Sequence [Docs]

● In Python: the term sequence refers generally to a data
structure consisting of an indexed collection of values,
which we’ll generally call elements.
○ That is, there is a first, second, third value (which CS

types call #0, #1, #2, etc.). “Zero-based” vs “One-based”
indexing

● A sequence may be finite (with a length) or infinite.
● It may be mutable (elements can change) or immutable.
● It may be indexable: its elements may be accessed via

selection by their indices.
● It may be iterable: its values may be accessed

sequentially from first to last.

list
>>> my_nums = [42, 1, 5]

indexing
>>> my_nums[0]
42

modifying the list
>>> my_nums[2] = 3
>>> my_nums
[42, 1, 3]

iterating through the list
>>> some_nums = [1, 2, 3, 4]
>>> for num in some_nums:
... print(num * 2)
...
2
4
6
8

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Common sequence operations for this course

● `seq[ind]`: Indexing. Retrieval element at index `ind`
○ Note: Python uses zero-based indices! seq[0], seq[1], ...

● `len(seq)`: returns the length (or size) of the input sequence
● `elem in seq` / `elem not in seq`: check if `elem` is present in a sequence
● `seq1 + seq2`: concatenate two input sequences together (creates a new sequence)
●

Iterating through a sequence

● Two common ways to iterate through a sequence: `for` and `while` loops

my_nums = [1, 2, 3]
for num in my_nums:
 print(num * 2)

my_nums = [1, 2, 3]
i = 0
while i < len(my_nums):
 print(my_nums[i] * 2)
 i += 1

Sequence concatenation

● We can concatenate (aka fuse/join) two sequences via the `+` operator

>>> nums1 = [1, 2, 3]
>>> nums2 = [4, 5, 6]
>>> nums3 = nums1 + nums2
>>> nums3
[1, 2, 3, 4, 5, 6]

Sequence "contains" element" (in, not in)

● We can check if a sequence contains an element

>>> nums1 = [1, 2, 3, 4]
>>> 2 in nums1
True
>>> 5 not in nums1
True

Sequence types in Python

● Sequences that we've seen (or will see) in this course
○ string

■ Note: strings are immutable!
○ range
○ list
○ tuple

■ aka an immutable list

Sequence example: strings

● Strings are an immutable sequence
● All of the sequence operations can also be performed on strings!

words = ['apple', 'ymca']
for word in words:
 for letter in word:
 print(letter + '!')
a!
p!
p!
l!
e!
y!
m!
c!
a!

iterate through `words` list

iterate through each letter (character) of the current
word

add (concatenate) a "!" to the end of the letter

(for reference) Sequence operations

Operation Result

x in s True if an item of s is equal to x, else False

x not in s False if an item of s is equal to x, else True

s + t the concatenation of s and t

s * n or n * s equivalent to adding (concatenating) s to itself n times

s[i] ith item of s, origin 0

s[i:j] slice of s from i to j

s[i:j:k] slice of s from i to j with step k

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

s.index(x[, i[, j]]) index of the first occurrence of x in s (at or after index i and before
index j)

s.count(x) total number of occurrences of x in s

Ranges

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))

[-2, -1, 0, 1]

>>> list(range(4))

[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0 starting value
(Demo 09.py:Demo00)

14

start=-2 end=2
(exclusive)(inclusive)

Tip: `range()` does not immediately
calculate the entire sequence at once.
Instead, it generates each element "on

demand" (called "lazy evaluation").
To fully materialize the range, one way is

to use the `list()` constructor.

>>> range(5)
range(0, 5)
>>> list(range(5))
[0, 1, 2, 3, 4]
>>> [x for x in range(5)]
[0, 1, 2, 3, 4]

List Comprehensions

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

16

A way of turning a simple for loop into a single line
(not 100% accurate, but one way of looking at it):

my_nums = [1, 2, 3, 4]
out = []
for num in my_nums:
 if is_even(num):
 out = out + [num ** 2]
print(out)
[4, 16]

my_nums = [1, 2, 3]
out = [num ** 2 for num in my_nums if is_even(num)]
print(out)
[4, 16]

Example: Two Lists

Given these two related lists of the same length:

xs = range(-10, 11)

ys = [x*x - 2*x + 1 for x in xs]
Question: Write a list comprehension that evaluates to:

1
7

A list of all the x values (from xs) for which the corresponding y (from ys) is below 10.

>>> list(xs)

[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> ys

[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> xs_where_y_is_below_10

[-2, -1, 0, 1, 2, 3, 4]

Answer:
[xs[i] for i in range(len(xs)) if ys[i] < 10]

Question (practice):
implement this with a for loop,
and a while loop

xs_where_y_is_below_10 = []
for i in range(len(xs)):
 if ys[i] < 10:
 xs_where_y_is_below_10 += [xs[i]]

i = 0
xs_where_y_is_below_10 = []
while i < len(xs):
 if ys[i] < 10:
 xs_where_y_is_below_10 += [xs[i]]
 i += 1

Example: Promoted

First in Line

Implement promoted, which takes a sequence s and a one-argument function f. It returns a list with the same elements as
s, but with all elements e for which f(e) is a true value ordered first. Among those placed first and those placed after, the
order stays the same.

19

def promoted(s, f):

 """Return a list with the same elements as s, but with all

 elements e for which f(e) is a true value placed first.

 >>> promoted(range(10), odd) # odds in front

 [1, 3, 5, 7, 9, 0, 2, 4, 6, 8]
 """

 return ___
[e for e in s if f(e)] + [e for e in s if not f(e)]

Lists, Slices, & Recursion

A List is a First Element and the Rest of the List

For any list s, the expression s[1:] is called a slice from index 1 to the end (or 1 onward)

• The value of s[1:] is a list whose length is one less than the length of s

• It contains all of the elements of s except s[0]

• Slicing s doesn't affect s (it creates a new list)

21

>>> s = [2, 3, 6, 4]
>>> s[1:]
[3, 6, 4]
>>> s
[2, 3, 6, 4]

In a list s, the first element is s[0] and the rest of the elements are s[1:].

More slicing/indexing tricks

● Tip: negative indices generally means "count backwards from the end"

Operation Result

seq[start:end:step]

Slice a sequence from [start, end), but with stepsize=step.
Omitting start implicitly sets start=0
Omitting end implicitly sets end=len(seq).
Omitting stepsize implicitly sets stepsize=1.

seq[::-1] Creates a new seq in reverse order.

seq[-k]
Return the element at index `len(seq) - k`, aka count backwards from the end.
`seq[-1]` is "the last element", `seq[-2]` is "the second-to-last element",
etc.

Recursion Example: Sum
Implement sum_list, which takes a list of numbers s and returns their sum. If a list is empty, the sum of its elements is 0.

23

def sum_list(s):
 """Sum the elements of list s.

 >>> sum([2, 4, 1, 3])
 10
 """

 if len(s) == 0:

 return 0

 else:

 return _______ + _________________
s[0] sum_list(s[1:])

Recursive idea: The sum of the elements of a
list is the result of adding the first element to
the sum of the rest of the elements

Recursion Example: Large Sums
Definition: A sublist of a list s is a list
with some (or none or all) of the
elements of s.
Implement large, which takes a list of
positive numbers s and a
non-negative number n.

It returns the sublist of s with the
largest sum that is less than or equal
to n.

You may call sum_list, which takes a
list and returns the sum of its
elements.

24

def large(s, n):
 """Return the sublist of positive numbers s with the
 largest sum that is less than or equal to n.

 >>> large([4, 2, 5, 6, 7], 3)
 [2] # 2 <= 3
 >>> large([4, 2, 5, 6, 7], 8)
 [2, 6] # 2 + 6 = 8 <= 8
 >>> large([4, 2, 5, 6, 7], 19)
 [4, 2, 6, 7] # 4 + 2 + 6 + 7 = 19 <= 19
 >>> large([4, 2, 5, 6, 7], 20)
 [2, 5, 6, 7] # 2 + 5 + 6 + 7 = 20 <= 20
 """
 if s == []:
 return []
 elif s[0] > n:
 return large(s[1:], n)
 else:
 first = s[0]
 with_s0 = _______________________________________
 without_s0 = ____________________________________
 if sum_list(with_s0) > sum_list(without_s0):
 return with_s0
 else:
 return without_s0

[first] + large(s[1:], n - first)
large(s[1:], n)

Alternate implementation: Large Sums
Definition: A sublist of a list s is a list with
some (or none or all) of the elements of s.
Implement large, which takes a list of
positive numbers s and a non-negative
number n.

It returns the sublist of s with the largest
sum that is less than or equal to n.

25

def large_v2(s, n):
 """Return the sublist of positive numbers s with the largest sum up
to n.

 >>> large_v2([4, 2, 5, 6, 7], 20)
 [2, 5, 6, 7]
 """
 # Alternate recursive implementation
 if s == []:
 return []
 elif n < 0:
 # s contains only positive integers, and it's
 # impossible to add pos ints to get a neg/zero int
 return []
 else:
 first = s[0] # a number
 with_s0 = [first] + large_v2(s[1:], n - first)
 without_s0 = large_v2(s[1:], n)
 sum_with_s0 = sum_list(with_s0)
 sum_without_s0 = sum_list(without_s0)
 if sum_with_s0 > sum_without_s0 and sum_with_s0 <= n:
 return with_s0
 else:
 return without_s0

Question: why don't I have to check if
`sum_without_s0 <= n` here?

Answer: the recursive call `without_s0 =
large_v2(s[1:], n)` already enforces that the

sum of `without_s0` is <= n.
"Trust in the recursion", and think about function

domain + range.
Note: you can add the check and it would still work, it would just be

redundant.

eg why isn't it this?
...
elif sum_without_s0 <= n:
 return without_s0

