Welcome to Data C88C!

Lecture 09: Sequences

Monday, July 7th, 2025

Week 3

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e (Optional, extra credit) Weekly course surveys on Gradescope
* Out now: "Course Survey (Week 02) (optional, extra credit)”
* Help make the class better, for both this semester and future semesters!
e Due dates:
» Lab03, HWO03 due date extended: now due tonight (July 7th, 11:59 PM PST) [link]
* Lab04, HWO04: due Tues July 8th
e Project 01 "Maps" released tomorrow
* Group size: 2 (max)
» Please try to find a partner, but if you'd prefer to work alone, that's fine too

https://edstem.org/us/courses/79702/discussion/6809080

(Reminder) Announcement: Financial Aid Eligibility Survey

"In accordance with federal requirements established by the Department of Education, we need to verify that students are
participating in their courses. A survey has been sent to your students in DATA C88C, COMPSCI C88C to confirm their
eligibility to receive financial aid. Students will receive separate instructions to complete the 1-question assignment on
academic integrity.

You can learn more about the requirement on the Eligibility for Financial Aid at UC Berkeley page.”

Students: please check your bCourses for an assignment that verifies your participation in classes. Required for
receiving financial aid. Read the above link for more info.

https://financialaid.berkeley.edu/how-aid-works/eligibility/

| ecture Overview

e Sequences
o Lists, str
e Range
e List comprehensions
e Slicing

Definition: Sequence [Docs]

e |n Python: the term sequence refers generally to a data
structure consisting of an indexed collection of values,
which we’'ll generally call elements.

o That s, there is a first, second, third value (which CS
types call #0, #1, #2, etc.). “Zero-based” vs “One-based
indexing

e A sequence may be finite (with a length) or infinite.

e |t may be mutable (elements can change) or immutable.

e [t may be indexable: its elements may be accessed via
selection by their indices.

e [t may be iterable: its values may be accessed
sequentially from first to last.

N

list
>>> my_nums = [42, 1, 5]

1indexing
>>> my_nums|[0]
42

modifying the list
>>> my_nums|[2] = 3
>>> my_nums

[42, 1, 3]

1terating through the 1list

>>> some_nums = [1, 2, 3, 4]

>>> for num 1n some_nums:
print(num * 2)

o Ph~N-

https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Common sequence operations for this course

e seqg[ind] : Indexing. Retrieval element at index 'Ind

o Note: Python uses zero-based indices! seq[0], seq[1], ...

“"len(seq) : returns the length (or size) of the input sequence

‘elem 1n seq / elem not 1n seq:checkif elem is presentin a sequence
'seql + seg2 :concatenate two input sequences together (creates a new sequence)

Iterating through a sequence

e Two common ways to iterate through a sequence: for and while loops

my_nums = [1, 2, 3] my_nums = [1, 2, 3]
for num in my_nums: 1 =0
print(num x 2) while 1 < len(my_nums):

print(my_nums[1] * 2)

1 +=1

Sequence concatenation

e \We can concatenate (aka fuse/join) two sequences via the + operator

>>> numsl = [1, 2, 3

>>> nums2 = [4, 5, 6

>>> nums3 = numsl + nums?2
>>> nums3

(1, 2, 3, 4, 5, 6]

Sequence "contains” element” (in, not in)

e \We can check if a sequence contains an element

>>> numsl = [1, 2, 3, 4]
>>> 2 1n numsl

True
>>> 5 not 1n numsl

True

Sequence types in Python

e Sequences that we've seen (or will see) in this course

o string
m Note: strings are immutable!
O range
o list
o tuple
m aka an immutable list

Sequence example: strings

e Strings are an immutable sequence
e All of the sequence operations can also be performed on strings!

words = ['apple', 'ymca'] _ Iterate through words' list

for word in words: < |
iterate through each letter (character) of the current

word

for letter in word: =
print(letter + '!'")

a
o}
51 add (concatenate) a

to the end of the letter

(for reference) Sequence operations

Operation Result

X 1N s

True if an 1tem of s 1s equal to x, else False

X not 1n s

False if an 1tem of s 1s equal to x, else True

s + €

the concatenation of s and t

S * N Or n xS

equivalent to adding (concatenating) s to itself n times

s[1] 1th item of s, origin 0

s[1:7] slice of s from 1 to j

s[1:7:Kk] slice of s from 1 to j with step k
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

s.index(x[, i[, j11)

index of the first occurrence of x in s (at or after index i1 and before
index 7j)

s.count(x)

total number of occurrences of x in s

Ranges

The Range Type

A range is a sequence of consecutive integers.’

¢ 9 _5) _4) _3) _2) _l) G) l) 2) 3) 4) 5)

_

\

range (-2,
Length: ending value - starting value start/z E 5
] _ _ (inclusive) (exclusive)
Element selection: starting value + index
>>> list(range(-2, 2)) { List constructor j
(-2, -1, 0, 1]
>>> list(range(4)) { Range with a 0 starting value j

[0, 1, 2, 3] "Ranges can actually represent more general integer sequences.

Tip: ‘range() does not immediately
calculate the entire sequence at once.
Instead, it generates each element "on

demand" (called "lazy evaluation").

To fully materialize the range, one way is
to use the ‘list()” constructor.

>>> range(5)

range(0, 5)

>>> list(range(5))

[0, 1, 2, 3, 4]

>>> [x for x in range(5)]
[0, 1, 2, 3, 4]

(Demo 09.py:Demo00)

List Comprehensions

List Comprehensions
[<map exp> for <name> in <iter exp> if <filter exp>]
Short version: [<Kmap exp> for <name> in <iter exp>]

A way of turning a simple for loop into a single line
(not 100% accurate, but one way of looking at it):

my_nums = [1, 2, 3, 4] my_nums = [1, 2, 3]
out = [] out = [num **x 2 for num in my_nums 1f 1s_even(num)]
for num in my_nums: print(out)

if i1s_even(num) : # 14, 16]

out out + [num *%x 2]
print(out)

[4, 16]

Example: Two Lists

Question (practice): xs_where_y_is_below_10 = []
. [] n _F . . _L :
implement this with a for loop, " ;f‘;szj;gil:rj(xs))
and a while loop -

Xs_where_y_1is_below_10 += [xs[1]]

Given these two related lists of the same length:

Xs = range(-10, 11)

. i =0
yS = [X*X N Z*X + 1 'FOr X 1N XS] Xs_where_y_1is_below_10 = []
while i < len(xs):

if ys[i] < 10:

xs_where_y_1is_below_10 += [xs[1]]

Question: Write a list comprehension that evaluates to:

A list of all the x values (from xs) for which the corresponding y (from ys) is below 10.
>>> list(xs)

[-16, -9, -8, -7, -6, -5, -4, -3,
>>> yS

1 +=1

5, 6, 7, 8, 9, 10]

‘\
!
!
!
!
!
!
i

i16, 25, 36, 49, 64, 81]

N mmm o mEm § S § EES F EES O EES § EES § EEE § EES O S § EEE § EE O EEm § EESS N EEm § EEm § B § Emm § s § w8 mm

>>> xs_where_y_1s_below_10

-2, -1, 0, 1, 2, 3, 4]

Answer:
[xs[1] for 1 1n range(len(xs)) 1f ys[i1] < 10]

Example: Promoted

First in Line

Implement promoted, which takes a sequence s and a one-argument function f. It returns a list with the same elements as

s, but with all elements e for which f(e) is a true value ordered first. Among those placed first and those placed after, the
order stays the same.

def promoted(s, f):
""MReturn a list with the same elements as s, but with all

elements e for which f(e) 1s a true value placed first.

>>> promoted(range(10), odd) # odds in front
|1, 3, 5, 7, 9, 0, 2, 4, 6, 8]

[e for e 1n s 1f f£f(e)] + [e for e 1n g 1f not f (e)]

return

Lists, Slices, & Recursion

A List Is a First Element and the Rest of the List

For any list s, the expression s[1:] is called a slice from index 1 to the end (or 1 onward)
* The value of s[1:] is a list whose length is one less than the length of s
* |t contains all of the elements of s except s[0]

» Slicing s doesn't affect s (it creates a new list)

>>> s = [2, 3, 6, 4]

>>> s[1:]
[3, 6, 4]
>>> S

12, 3, 6, 4]

In a list s, the first element is s[0] and the rest of the elements are s[1:].

More slicing/indexing tricks

. Tip: negative indices generally means "count backwards from the end"

Operation Result

Slice a sequence from [start, end), but with stepsize=step.
Omitting start implicitly sets start=0

Omitting end implicitly sets end=len(seq).

Omitting stepsize implicitly sets stepsize=1.

seq[start:end:step]

seq[::-1] Creates a new seq 1n reverse order.
Return the element at index len(seq) - k , aka count backwards from the end.
seq[-k] "seq[-1] s "the last element", "seq[-2] 1is "the second-to-last element",

etc.

Recursion Example: Sum

Implement sum_list, which takes a list of numbers s and returns their sum. If a list is empty, the sum of its elements is 0.

def sum_list(s):
" Sum the elements of list s.

>>> sum([2, 4, 1, 3])
10

Recursive idea: The sum of the elements of a
else: list is the result of adding the first element to
s[0] sum_list(s[1:]) the sum of the rest of the elements

Recursion Example: Large Sums

Definition: A sublist of a listsis a list ~def large(s, n): | o |
with some (or none or all) of the ""I"Return the sublist of positive numbers s with the

largest sum that 1s less than or equal to n.
elements of s.

Implement large, which takes a list of >>> large([4, 2, 5, 6, 7], 3)
positive numbers s and a [2] # 2 <=3
non-negative number n. >>> large([4, 2, 5, 6, 7], 8)

[2, 6] # 2 + 6 = 8 <= 8
>>> large([4, 2, 5, 6, 7], 19)

It returns the sublist of s with the [4, 2, 6, 7] # 4 + 2 + 6 + 7 = 19 <= 19
largest sum that is less than or equal >>> large([4, 2, 5, 6, 7], 20)
to n. |2, 5, 6, 7] # 2 +5 + 6 + 7 = 20 <= 20
_ _ if s == []:
You may call sum_list, which takes a return []
list and returns the sum of its elif s[0] > n:
elements. return large(s[1:], n)
else:
first = s[0O]
with s@ = [first] + large(s[1:], n - first)
without_se - arge(s{11], n)

if sum_list(with_s0) > sum_Llist(without_s0):
return with_s0

else:
return without s0

Alternate implementation: Large Sums

Definition: A sublistof a listsis alistwith ~ def large_v2(s, n):
some (or none or all) of the elements of s. """Return the sublist of positive numbers s with the largest sum up

Implement large, which takes a list of to n.

positive numbers s and a non-negative >>> large_v2([4, 2, 5, 6, 7], 20)

number n. (2,5, 6, 7]
It returns the sublist of s with the largest # Alternate recursive implementation
sum that is less than or equal to n. it s == []:
return |[]
elif n < 0O:

Question: why don't | have to check if

‘ 4 out S0 <= - here? # s contains only positive integers, and 1t's
sum_without_sO <= n" here”

impossible to add pos ints to get a neg/zero int
return []
else:
first = s[0O] # a number
with_s0 = [first] + large_v2(s[l:], n - first)
without_s0 = large_v2(s[1l:], n)
sum_with_sO = sum_list(with_s0)
sum_without_s0O = sum_Tlist(without_s0)
if sum_with_sO® > sum_without sO® and sum with _s®@ <= n:
sum of without _sO is <=n.

, _ _ _ return with _so0
"Trust in the recursion”, and think about function

. else:
domain + range.

Note: you can add the check and it would still work, it would just be return without_so0
redundant.

eg why isn't it this?

elif sum_without _s0O <= n:
return without s0

Answer: the recursive call ' without s0 =
large_v2(s[1l:], n) already enforces that the

