Welcome to Data C88C!

Lecture 11: Mutability

Wednesday, July 9th, 2025

Week 3

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e Maps project released!
e Reminder: weekly course surveys released on Gradescope
* (small) amount of extra credit per survey filled out!

Important. Midterm logistics

e Midterm is next week!
o Required: read this Ed post carefully: [link]
e "Main" exam time: Tuesday July 15th, 3pm-5pm PST
e Alternate Exams
o Tuesday, July 15 7:00pm-9:00pm PT
o Wednesday, July 16th, 8:20am-10:20am PT
e Important: if you can't make the "main” exam time, fill out the Google Form linked in the above Ed post!
e (last resort) if you can't make any of the midterm times, that's OK: your midterm score will be
extrapolated based on your final exam score performance [link_syllabus]
e Midterm covers up to and including this Thursday, July 10th (Lecture 12: Object Oriented Programming)

https://edstem.org/us/courses/79702/discussion/6812483
https://c88c.org/su25/articles/about-c88c/#excused-exams-amp-incompletes

Midterm logistics

* The midterm will be held over Zoom + Gradescope

* You must have your camera + screen sharing on during the entire exam, and we will be doing screen+camera
recording.

* You must take the exam in a quiet room with no other students present

* Things to bring to the exam (and nothing else!):
* Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine, eg: Passport, driver’s license,

etc.

» (Optional) Two (2) pages of handwritten (not typed!) notes
* (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser. Useful for drawing Env Diags!
* We will also provide everyone with a 1-2 page digital PDF of additional reference

* Other than the above notes, the exam will be closed book, closed notes.

* For more detalls, read the Ed post: [link]

https://edstem.org/us/courses/79702/discussion/6812483

Midterm study tips

Do LOTS of previous exams: htips://c88c.org/su25/resources/
* Practice the Gradescope timed online exam format: "(Optional) Practice Online Midterm (SU24)"
» Participate in all course content
* Watch all lecture videos (including Prof. John DeNero's YouTube videos)
» Attend (or watch recorded) lab sections
 Complete (and understand!) the labs and homework assignments
» Read the course textbook to reinforce concepts / fill any gaps
* Practice, practice, practice
* Tip: there is value in re-doing coding exercises / previous tricky HW/lab assignments!

https://c88c.org/su25/resources/

| ecture Overview

e Mutability

 List mutation

* Pure vs impure functions
e |dentity

* IS VS ==

List mutation

e |In Python, we can modify (mutate) lists directly via special methods like ‘Ist.append()

>>> my_1lst = [1, 2, 3]
>>> my_Llst.append(42)
>>> my_Llst

[1, 2, 3, 42]

>>> my_Llst[0] = 9
my_1lst

[9, 2, 3, 42]

>>> my_Llst.pop()

42

>>> my_Llst

19, 2, 3]

List mutation (reference)

Operation Result

Assign "new_value to list at index i . If i 1is out of bounds, then raise

Lstli] = new_value "IndexError: list assignment index out of range".
lst.append(new_value) Add new value to the end of the list
lst.extend (other_1lst) Add multiple values (other_seq) to end of seq. Similar: "1lst += other_1lst’

Remove (and return) last element of list. If 1ind s omitted, this
implicitly sets 1ind=-1".

Remove the first +instance of "elem 1in the list. If "elem 1is not 1in list,
raises: "ValueError: x not in List"

lst.pop(ind)

lst.remove(elem)

Example: reverse |Ist()

Question: write a function reverse_Ist(Ist) that, given an input
list, reverses the list via direct modification ("in-place").

>>> nums = [1, 2, 3, 4]
>>> reverse_Llst(nums)
>>> nums

14, 3, 2, 1]

Hint: swap the first and last values, then repeat going "inwards”

112 | 3| 4 4 | 2| 3 | 1
Swap 1 and 4
4 | 2 | 3 | 1 4

!

!

Swap 2 and 3

def reverse_lst(lst):

"""Given an 1nput list, reverse the list

via
> >
> >
>> >

[4,

for

direct modification ("in-place").
nums = [1, 2, 3, 4]
reverse_lst(nums)

nums

3, 2, 1]

11 in range(len(lst) // 2):
12 = len(lst) - 1 - 11

tmp = lst[11]
lst[11l] = lst[12]
lst[12] = tmp

Question: using
negative indexes,
what should 'i2° be?

Answer: 12 = -(711 + 1)

Caution: mutation vs non-mutation

e Be sure to understand the difference between functions that modify (mutate) their inputs, and functions
that create something new (eg returns a new list, etc).

def reverse_lst(lst): def reverse_lst_v2(lst):
for i1 in range(len(lst) // 2): # slicing creates a new Llist

i2 = len(lst) - 1 - i1 return lst[::-1]
tmp = lst[11]

lst[11] = lst[12]

lst[12] = tmp

>>> nums = [1, 2, 3, 4] >>> nums = [1, 2, 3, 4]
>>> reverse_Llst(nums) >>> nums_r = reverse_lst_v2(nums)
>>> nums >>> nums_r
[4, 3, 2, 1] (4, 3, 2, 1] SN
>>> nums original 'nums is still the same,

— even after calling

4
L1, 2, 3, 4] ‘reverse_Ist_v2()'!

Functions and mutation

e Common convention: functions that modify its inputs often return "None" (ie have no return statement)
o Their side effect is the functions "output” T Aka the function modifies the

o Aka "impure" functions

inputs "in place™

e On the other hand, functions that don't modify their inputs return a new value

def

> >
> >
> >

o Aka "pure” functions

square_nums_mutate(nums) :

i =0

while i < len(nums):
nums[1] = nums[i1] *x*x 2
1 += 1

numsl = [1, 2, 3]
square_nums_mutate(numsl)
numsl

4) 9]\

Here, nums1 is modified!

def square_nums_pure(nums) : def square_nums_alt(nums):
return [n ** 2 for n in nums] out = []

>>> numsl = [1, 2, 3] for n in nums:

>>> square_nums_pure(numsl) out.append(n ** 2)
(1, 4, 9] return out

>>> numsl

(1, 2, 3]

Question: is ‘'square_nums_alt()" a
pure function, or a non-pure function?

Answer: it's a pure function! Even though
there is mutation going on in the function
body (out.append()), to the "outside world"
‘'square_nums_alt() is a pure function (not
modifying input args / global state)

Here, nums1 is NOT modified.
Instead, 'square_nums_pure()
created a new list

Why care about pure vs impure functions?

e Generally speaking, pure functions are easier to understand and reason about

e EX: calling the function with the same arguments always has the same exact behavior, no
matter how often you call the function and in what order you call it

e Some programming languages embrace pure functions: functional programming
o Examples: Lisp (eg Scheme), Haskell, ML (the programming language, not "machine

learning")

e |n practice: most main-stream programming languages allow impure functions, and leave it to
the programmer to adopt functional-style programming if they wish to do so
o Examples: Python, Java, C/C++

e Aka "programming paradigms”

Environment Diagrams: list mutation

o Ilst[1] = new_val
o If 'new_val is a primitive value (eg int):
replace index I contents
o |f 'new val is a compound value (eg
another list): draw an arrow to new_val
e append() /extend(): Add additional boxes
(entries) to the list

my_lst = [1, 2, 3]
my_Llst[1l] = 42

my_lst = [1, 2, 3]

lst2

= ['hi', 'bye']

my_Llst[1l] = Llst2

=

Python 3.6
(known limitations)

my: lsk = [Ly 25 3]
my lst.append(42)

Frames Objects

'

42

Global frame list

my Ist |«

2
3

0
1

Frames Objects

Global frame list
0
my_Ist & 1
Ist2

Frames Objects

Global frame list

o [H |2
my_ st -

Frames Objects

Global frame list

my Ist &« =

Shallow vs deep copy

e Recall that lists can contain other lists. A list is an example of a "compound" object.

This is known as a "shallow" copy. PythonTutor: [link]

>>> 1lstl = [l, 2) [3) 4]] Frames Objects
Make a copy of lstl |

>>> lstl_copy = list(lstl) Global frame ist
>>> lstl_copyl[l] = 9 Ist1
>>> Llstl_copy Ist1_copy
BLANK_A

>>> lstl

BLANK_B

>>> 1lstl_copy[2].append(42)

>>> lstl_copy

list_iterator ingtance

list

BLANK C 0 |1 2J. ‘ Reason:‘ Ist1[2] .and
119 Ist1 _copy[2] both point to the

>>> Lstl same underlying list object

BLANK_D ying o

Thus, mutations to Ist1[2]

. . "
Question: what does Python display” sropagate to ‘Ist!_copy[2]

A change to Answer: (and vice-versa)
Ist1_copy y BLANK_A: [1, 9, [3, 4]]
modified Ist1’! BLANK B: :l, 2, :3, 4]]
BLANK_C: [1, 2, [3, 4, 42]]
BLANK_D: [1, 2, [3, 4, 42]]

https://pythontutor.com/cp/composingprograms.html#code=lst1%20%3D%20%5B1,%202,%20%5B3,%204%5D%5D%0A%23%20Make%20a%20copy%20of%20lst1%0Alst1_copy%20%3D%20list%28lst1%29%0Alst1_copy%5B1%5D%20%3D%209%0Aprint%28lst1_copy%29%0A%23%20BLANK_A%0Aprint%28lst1%29%0A%23%20BLANK_B%0Alst1_copy%5B2%5D.append%2842%29%0Aprint%28lst1_copy%29%0A%23%20BLANK_C%0Aprint%28lst1%29%0A%23%20BLANK_D&cumulative=true&curInstr=8&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Shallow vs deep copy

e Definition: "A shallow copy constructs a new compound object and then (to the extent possible) inserts
references into it to the objects found in the original.” [link_source]

o le: A shallow copy only copies the "first level" of the list PythonTutor: [link]

Frames Objects

Global frame list

>>> 1stl = [1, 2, [3, 4]] This is known as a "shallow" copy. st1
Make a copy of Llstl ¥ Ist1_copy

Ist1_copy?2
>>> 1lstl_copy = [elem for elem in lstl] -

4

list
0 1 2
1149

list_iterator instance

Question: how could we make a "deeper" copy of 'Ist1"?
Hint: the list(lst) constructor creates a (shallow) copy of 'Ist'.
Hint: to tell if something is a list, use type(x) == 1list™®

detached from
Ist1’]

42
\ Success:
‘Ist1_copy2 is

list list
0 1 2 0 1

i3 (7| 3| | 42

using Llist comprehension and conditional expression
>>> 1lstl_copy2 = [list(elem) 1f (type(elem) == list) else elem for elem in lstl]

Issue: this doesn't work if there is a list at the "third" level, ex:
>>> 1st2 = [1, 2, [3, [4]1]]

| et's generalize this "COpy deeper" idea into: "deep copy" * Aside: one can also do “isinstance(x, list)". If you're curious, here is a long

discussion on why one should use "type() vs ‘isinstance() : [link]

https://docs.python.org/3/library/copy.html
https://pythontutor.com/cp/composingprograms.html#code=lst1%20%3D%20%5B1,%202,%20%5B3,%204%5D%5D%0A%23%20Make%20a%20copy%20of%20lst1%0Alst1_copy%20%3D%20list%28lst1%29%0Alst1_copy%5B1%5D%20%3D%209%0Aprint%28lst1_copy%29%0A%23%20BLANK_A%0Aprint%28lst1%29%0A%23%20BLANK_B%0Alst1_copy%5B2%5D.append%2842%29%0Aprint%28lst1_copy%29%0A%23%20BLANK_C%0Aprint%28lst1%29%0A%23%20BLANK_D%0Alst1_copy2%20%3D%20%5Blist%28elem%29%20if%20%28type%28elem%29%20%3D%3D%20list%29%20else%20elem%20for%20elem%20in%20lst1%5D&cumulative=true&curInstr=15&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D
https://stackoverflow.com/a/1549854

Deep copy

e Definition: "A deep copy constructs a new compound object and then, recursively, inserts copies into it
of the objects found in the original." [link_source]
o le if the deep copy encounters a compound object (that may contain other compound objects), deep
copy will recursively copy the compound object.

Question: implement the ‘deep copy(Ist) def deep_copy(lst):

function that, given an input list, deep-copies it n?ztbiﬁ. I
th?“SP | | elif type(lst[0]) == list:
Hint: implement it recursively! return [deep_copy(lst[0])] + deep_copy(lst[1:])
else:
lst[0] 1s a primitive object (eg int)
>>> lst = 11, 2, [3], [4, [5, 6]]] return [1st[0]] + deep_copy(lst[1:])

>>> 1lst_deepcopy = deep_copy(lst)

prove that the copy 1s deep, not shallow
>>> lst_deepcopy[3][1].append(42)

>>> lst_deepcopy

Approach: if the first element of ‘Ist is a list, then

(1, 2, [31, [4, [5, 6, 42]]] ‘deep_copy(lst[O]) : and concatenate it to the result of
>>> st deep copy(lst[1:]).

(1, 2, 31, [4, [5, 6]]] Easy case: If the first element is a primitive (eg int), then
L ’ , ’ concatenate [Ist[0]] to "deep_copy(Ist[1:]) .

https://docs.python.org/3/library/copy.html

Shallow copy vs Deep copy

Observe how similar these two

Implementations are!

def deep_copy(lst):
if not lst:
return []
elif type(lst[0]) == list:
return [deep_copy(lst[0])] + deep_copy(lst[1l:])
else:
1lst[0] 1s a primitive object (eg int)
return [lst[0]] + deep_copy(lst[1l:])

N

def shallow_copy(lst):
1T not lst:
return []

else:

return [lst[0]] + shallow_copy(lst[1l:])

Other ways to create shallow copies of Llists

lst_scopyl
lst_scopy2
lst_scopy3

lst_scopy4

for x in lst:

list(lst)
lst[:] # slicing creates shallow copy
[x for x 1n lst]

[]

lst_scopy4.append(x)

lst_scopy5

[]

lst_scopy5.extend(lst)

Mutation and Identity

Sameness and Change

*As long as we never modify objects, a compound object is just the totality of its pieces

* This view is no longer valid in the presence of change

* A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

* Conversely, we could have two lists that happen to have the same contents, but are different

>>> a = [10] >>> a = [10]

>>> b = 3 >>> b = [10]

>>> g == b >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> 3 >>> 3

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> Qa == >>> g ==

True False

ldentity Operators

Identity
<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality
<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

(Demo)

Equality (==") vs identity ('is’)

Python 3.6
(known limitations)

1stl = [1, 2, 3]
1st2 = [1, 2, 3]

1st3 = A1stl

Edit this code

Ist1 and Ist2 point to different objects, but have
the same values

=> Equality (Ist1 == Ist2)

Aka “Value equality”

On the other hand:

>>> 1lstl == lst2
True
Frames Objects >>> 1stl 1s lst2
False
. ~
Global frame =t Although 'Ist1” has
0 | 5 "value equality" to
stl ‘Ist2°, they point to
1 2 3 different objects (have
st different identities)
st3 list
0 1 2
1. |2 | 3

Ist1 and Ist3 point to the same object

=> |dentity (1stl is 1lst3)

S

Aka “ldentity equality”

Mutation and Names

If multiple names refer to the same mutable object (directly or indirectly), then a change to that object is reflected in the value
of all of these names.

Question: What numbers are printed (and how many of them)? Print output (drag lower right corner to resize)
[25 T3 105, 85 25 8105715 8. [25 81

i £%§]7, [l, 8]] Frames Objects

S

Tt =

t.append([2]) Global frame ist
e s + t - " .
t[2].append(8) t

print(e) e ist

Answer:. (2, 7, [1, 8, [2, 8]], 1, 8, [2, 8]] / ist

PythonTutor: [link]

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B2,%207,%20%5B1,%208%5D %5D %0At%20%3D%20s%5B2%5D %0At.append%28%5B2%5D %29%0Ae%20%3D %205 %20%2B %20t%0At%5B2%5D .append %288 %29%0Aprint%28e%29%0A&cumulative=true&curlnstr=6 &mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B2,%207,%20%5B1,%208%5D%5D%0At%20%3D%20s%5B2%5D%0At.append%28%5B2%5D%29%0Ae%20%3D%20s%20%2B%20t%0At%5B2%5D.append%288%29%0Aprint%28e%29%0A&cumulative=true&curInstr=6&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

(Aside) How does Python implement the ‘is" operator?

How does Python implement the ‘'is" operator?
Intuitive (visual) answer: ‘ais b is True iff ‘@ points to the same exact object as b points to.

Python 3.6
(known limitations) Frames Objects
1stl = [1, 2, 3] Global frame list
1st2 = [1, 2, 3] - 0 |1
1st3 = 1lstl = gl s
Ist2
Edit this code Ist3 list
0 1

>>> 1stl is 1st2

False
>>> 1stl is 1st3
True

(Aside) How does Python implement the ‘is" operator?

How does Python implement the ‘'is" operator?
Technical answer: ‘ais b is True iff ‘'a points to the same memory address as b points to.

>>> 1lstl =
>>> 1lst2 =
>>> 1st3 = 1lstl
>>> id(lstl)
1906951142144
>>> id(1lst2)
1906951128448
>>> qd(1lst3)
1906951142144

These are memory
addresses! Eg somewnhere In
your CPU RAM

Tip: think of RAM as a long
array/list, and an address as
an index into the list.

>>> 1lstl 1s 1lst2

False

>>> 1lstl is 1st3

True

>>> 4d(lstl) == id(lst2)
False

>>> id(1lstl) == id(1lst3)
True

'IIIIIIIIII‘IIIIIIIIIIII

Thus, the "is” operator is actually comparing memory
addresses behind the scenes.

(Aside) Python's 'id() function

In Python, each object has a function id () which returns its "memory address”

CPU memory (random access memory, aka “RAM?)
Example: In 2024, a Macbook Pro 14" has 8 GB - 36 GB CPU RAM
Every Python object (eg list, string, etc) lives somewhere in your CPU memory.

» Aside: GPU (graphical processing units) have their own separate GPU memory. State-of-the-art ML models (like
ChatGPT, etc) are notoriously GPU-memory intensive

Bill Gates once said* in 1981 “640K of memory should be enough for anybody.”

® * Not actually true, but it makes a funny story

Related courses: CS61C (Architecture), CS162 (Operating Systems), CS164 (Programming Languages and Compilers)

https://groups.google.com/g/alt.folklore.computers/c/mpjS-h4jpD8/m/9DW_VQVLzpkJ
https://www.techspot.com/article/2024-anatomy-ram/

