
Welcome to Data C88C!

Lecture 11: Mutability
Wednesday, July 9th, 2025
Week 3
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Maps project released!
● Reminder: weekly course surveys released on Gradescope

• (small) amount of extra credit per survey filled out!

Important: Midterm logistics

● Midterm is next week!
○ Required: read this Ed post carefully: [link]

● "Main" exam time: Tuesday July 15th, 3pm-5pm PST
● Alternate Exams

○ Tuesday, July 15 7:00pm-9:00pm PT
○ Wednesday, July 16th, 8:20am-10:20am PT

● Important: if you can't make the "main" exam time, fill out the Google Form linked in the above Ed post!
● (last resort) if you can't make any of the midterm times, that's OK: your midterm score will be

extrapolated based on your final exam score performance [link_syllabus]
● Midterm covers up to and including this Thursday, July 10th (Lecture 12: Object Oriented Programming)
●

https://edstem.org/us/courses/79702/discussion/6812483
https://c88c.org/su25/articles/about-c88c/#excused-exams-amp-incompletes

Midterm logistics

• The midterm will be held over Zoom + Gradescope
• You must have your camera + screen sharing on during the entire exam, and we will be doing screen+camera

recording.
• You must take the exam in a quiet room with no other students present
• Things to bring to the exam (and nothing else!):

• Photo ID. Ideally your UCB student ID, but anything with your name + photo is fine, eg: Passport, driver’s license,
etc.

• (Optional) Two (2) pages of handwritten (not typed!) notes
• (Optional, recommended) Additional blank scratch paper, pencil/pen/eraser. Useful for drawing Env Diags!
• We will also provide everyone with a 1-2 page digital PDF of additional reference

• Other than the above notes, the exam will be closed book, closed notes.
• For more details, read the Ed post: [link]

https://edstem.org/us/courses/79702/discussion/6812483

Midterm study tips

• Do LOTS of previous exams: https://c88c.org/su25/resources/
• Practice the Gradescope timed online exam format: "(Optional) Practice Online Midterm (SU24)"
• Participate in all course content

• Watch all lecture videos (including Prof. John DeNero's YouTube videos)
• Attend (or watch recorded) lab sections
• Complete (and understand!) the labs and homework assignments
• Read the course textbook to reinforce concepts / fill any gaps

• Practice, practice, practice
• Tip: there is value in re-doing coding exercises / previous tricky HW/lab assignments!

https://c88c.org/su25/resources/

Lecture Overview

● Mutability
• List mutation
• Pure vs impure functions

● Identity
• `is` vs `==`

List mutation

● In Python, we can modify (mutate) lists directly via special methods like `lst.append()`

>>> my_lst = [1, 2, 3]
>>> my_lst.append(42)
>>> my_lst
[1, 2, 3, 42]
>>> my_lst[0] = 9
my_lst
[9, 2, 3, 42]
>>> my_lst.pop()
42
>>> my_lst
[9, 2, 3]

List mutation (reference)

Operation Result

lst[i] = new_value Assign `new_value` to list at index `i`. If `i` is out of bounds, then raise
"IndexError: list assignment index out of range".

lst.append(new_value) Add new value to the end of the list

lst.extend(other_lst) Add multiple values (other_seq) to end of seq. Similar: `lst += other_lst`

lst.pop(ind) Remove (and return) last element of list. If `ind` is omitted, this
implicitly sets `ind=-1`.

lst.remove(elem) Remove the first instance of `elem` in the list. If `elem` is not in list,
raises: "ValueError: x not in list"

Example: reverse_lst()
def reverse_lst(lst):
 """Given an input list, reverse the list
 via direct modification ("in-place").
 >>> nums = [1, 2, 3, 4]
 >>> reverse_lst(nums)
 >>> nums
 [4, 3, 2, 1]
 """
 for i1 in range(len(lst) // 2):
 i2 = len(lst) - 1 - i1
 tmp = lst[i1]
 lst[i1] = lst[i2]
 lst[i2] = tmp

Question: write a function `reverse_lst(lst)` that, given an input
list, reverses the list via direct modification ("in-place").

Hint: swap the first and last values, then repeat going "inwards"

1 2 3 4

Swap 1 and 4

4 2 3 1

4 2 3 1

Swap 2 and 3

4 3 2 1

>>> nums = [1, 2, 3, 4]
>>> reverse_lst(nums)
>>> nums
[4, 3, 2, 1]

Question: using
negative indexes,
what should `i2` be?

Answer: `i2 = -(i1 + 1)`

Caution: mutation vs non-mutation

● Be sure to understand the difference between functions that modify (mutate) their inputs, and functions
that create something new (eg returns a new list, etc).

>>> nums = [1, 2, 3, 4]
>>> reverse_lst(nums)
>>> nums
[4, 3, 2, 1]

>>> nums = [1, 2, 3, 4]
>>> nums_r = reverse_lst_v2(nums)
>>> nums_r
[4, 3, 2, 1]
>>> nums
[1, 2, 3, 4]

def reverse_lst_v2(lst):
 # slicing creates a new list
 return lst[::-1]

def reverse_lst(lst):
 for i1 in range(len(lst) // 2):
 i2 = len(lst) - 1 - i1
 tmp = lst[i1]
 lst[i1] = lst[i2]
 lst[i2] = tmp

original `nums` is still the same,
even after calling
`reverse_lst_v2()`!

Functions and mutation

● Common convention: functions that modify its inputs often return `None` (ie have no return statement)
○ Their side effect is the functions "output"
○ Aka "impure" functions

● On the other hand, functions that don't modify their inputs return a new value
○ Aka "pure" functions

def square_nums_mutate(nums):
 i = 0
 while i < len(nums):
 nums[i] = nums[i] ** 2
 i += 1

>>> nums1 = [1, 2, 3]
>>> square_nums_mutate(nums1)
>>> nums1
[1, 4, 9]

def square_nums_pure(nums):
 return [n ** 2 for n in nums]

>>> nums1 = [1, 2, 3]
>>> square_nums_pure(nums1)
[1, 4, 9]
>>> nums1
[1, 2, 3]

Here, `nums1` is modified! Here, `nums1` is NOT modified.
Instead, `square_nums_pure()`

created a new list

def square_nums_alt(nums):
 out = []
 for n in nums:
 out.append(n ** 2)
 return out

Question: is `square_nums_alt()` a
pure function, or a non-pure function?

Answer: it's a pure function! Even though
there is mutation going on in the function

body (`out.append()`), to the "outside world"
`square_nums_alt()` is a pure function (not

modifying input args / global state)

Aka the function modifies the
inputs "in place"

Why care about pure vs impure functions?

● Generally speaking, pure functions are easier to understand and reason about
● Ex: calling the function with the same arguments always has the same exact behavior, no

matter how often you call the function and in what order you call it
● Some programming languages embrace pure functions: functional programming

○ Examples: Lisp (eg Scheme), Haskell, ML (the programming language, not "machine
learning")

● In practice: most main-stream programming languages allow impure functions, and leave it to
the programmer to adopt functional-style programming if they wish to do so
○ Examples: Python, Java, C/C++

● Aka "programming paradigms"

Environment Diagrams: list mutation

● lst[i] = new_val
○ If `new_val` is a primitive value (eg int):

replace index `i` contents
○ If `new_val` is a compound value (eg

another list): draw an arrow to `new_val`
● append()/extend(): Add additional boxes

(entries) to the list

my_lst = [1, 2, 3]
my_lst[1] = 42

42

my_lst = [1, 2, 3]
lst2 = ['hi', 'bye']
my_lst[1] = lst2

Shallow vs deep copy

● Recall that lists can contain other lists. A list is an example of a "compound" object.

>>> lst1 = [1, 2, [3, 4]]
Make a copy of lst1
>>> lst1_copy = list(lst1)
>>> lst1_copy[1] = 9
>>> lst1_copy
BLANK_A
>>> lst1
BLANK_B
>>> lst1_copy[2].append(42)
>>> lst1_copy
BLANK_C
>>> lst1
BLANK_D

Question: what does Python display?

Answer:
BLANK_A: [1, 9, [3, 4]]
BLANK_B: [1, 2, [3, 4]]
BLANK_C: [1, 2, [3, 4, 42]]
BLANK_D: [1, 2, [3, 4, 42]]

A change to
`lst1_copy`

modified `lst1`!

Reason: `lst1[2]` and
`lst1_copy[2]` both point to the

same underlying list object.
Thus, mutations to `lst1[2]`
propagate to `lst1_copy[2]`

(and vice-versa)

PythonTutor: [link]This is known as a "shallow" copy.

https://pythontutor.com/cp/composingprograms.html#code=lst1%20%3D%20%5B1,%202,%20%5B3,%204%5D%5D%0A%23%20Make%20a%20copy%20of%20lst1%0Alst1_copy%20%3D%20list%28lst1%29%0Alst1_copy%5B1%5D%20%3D%209%0Aprint%28lst1_copy%29%0A%23%20BLANK_A%0Aprint%28lst1%29%0A%23%20BLANK_B%0Alst1_copy%5B2%5D.append%2842%29%0Aprint%28lst1_copy%29%0A%23%20BLANK_C%0Aprint%28lst1%29%0A%23%20BLANK_D&cumulative=true&curInstr=8&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Shallow vs deep copy

● Definition: "A shallow copy constructs a new compound object and then (to the extent possible) inserts
references into it to the objects found in the original." [link_source]
○ ie: A shallow copy only copies the "first level" of the list

>>> lst1 = [1, 2, [3, 4]]
Make a copy of lst1
>>> lst1_copy = [elem for elem in lst1]

PythonTutor: [link]

This is known as a "shallow" copy.

using list comprehension and conditional expression
>>> lst1_copy2 = [list(elem) if (type(elem) == list) else elem for elem in lst1]

Question: how could we make a "deeper" copy of `lst1`?
Hint: the `list(lst)` constructor creates a (shallow) copy of `lst`.
Hint: to tell if something is a list, use `type(x) == list`*

* Aside: one can also do `isinstance(x, list)`. If you're curious, here is a long
discussion on why one should use `type()` vs `isinstance()`: [link]

Issue: this doesn't work if there is a list at the "third" level, ex:
>>> lst2 = [1, 2, [3, [4]]]

Success:
`lst1_copy2` is
detached from

`lst1`!

Let's generalize this "copy deeper" idea into: "deep copy"

https://docs.python.org/3/library/copy.html
https://pythontutor.com/cp/composingprograms.html#code=lst1%20%3D%20%5B1,%202,%20%5B3,%204%5D%5D%0A%23%20Make%20a%20copy%20of%20lst1%0Alst1_copy%20%3D%20list%28lst1%29%0Alst1_copy%5B1%5D%20%3D%209%0Aprint%28lst1_copy%29%0A%23%20BLANK_A%0Aprint%28lst1%29%0A%23%20BLANK_B%0Alst1_copy%5B2%5D.append%2842%29%0Aprint%28lst1_copy%29%0A%23%20BLANK_C%0Aprint%28lst1%29%0A%23%20BLANK_D%0Alst1_copy2%20%3D%20%5Blist%28elem%29%20if%20%28type%28elem%29%20%3D%3D%20list%29%20else%20elem%20for%20elem%20in%20lst1%5D&cumulative=true&curInstr=15&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D
https://stackoverflow.com/a/1549854

Deep copy

● Definition: "A deep copy constructs a new compound object and then, recursively, inserts copies into it
of the objects found in the original." [link_source]
○ ie if the deep copy encounters a compound object (that may contain other compound objects), deep

copy will recursively copy the compound object.

Question: implement the `deep_copy(lst)`
function that, given an input list, deep-copies
the list.
Hint: implement it recursively!

>>> lst = [1, 2, [3], [4, [5, 6]]]
>>> lst_deepcopy = deep_copy(lst)
prove that the copy is deep, not shallow
>>> lst_deepcopy[3][1].append(42)
>>> lst_deepcopy
[1, 2, [3], [4, [5, 6, 42]]]
>>> lst
[1, 2, [3], [4, [5, 6]]]

def deep_copy(lst):
 if not lst:
 return []
 elif type(lst[0]) == list:
 return [deep_copy(lst[0])] + deep_copy(lst[1:])
 else:
 # lst[0] is a primitive object (eg int)
 return [lst[0]] + deep_copy(lst[1:])

Approach: if the first element of `lst` is a list, then
`deep_copy(lst[0])`, and concatenate it to the result of
`deep_copy(lst[1:])`.
Easy case: if the first element is a primitive (eg int), then
concatenate [lst[0]] to `deep_copy(lst[1:])`.

https://docs.python.org/3/library/copy.html

Shallow copy vs Deep copy

def deep_copy(lst):
 if not lst:
 return []
 elif type(lst[0]) == list:
 return [deep_copy(lst[0])] + deep_copy(lst[1:])
 else:
 # lst[0] is a primitive object (eg int)
 return [lst[0]] + deep_copy(lst[1:])

def shallow_copy(lst):
 if not lst:
 return []
 else:
 return [lst[0]] + shallow_copy(lst[1:])

Other ways to create shallow copies of lists
lst_scopy1 = list(lst)
lst_scopy2 = lst[:] # slicing creates shallow copy
lst_scopy3 = [x for x in lst]

lst_scopy4 = []
for x in lst:
 lst_scopy4.append(x)

lst_scopy5 = []
lst_scopy5.extend(lst)

Observe how similar these two
implementations are!

Mutation and Identity

Sameness and Change

•As long as we never modify objects, a compound object is just the totality of its pieces

•This view is no longer valid in the presence of change

•A compound data object has an "identity" in addition to the pieces of which it is composed

•A list is still "the same" list even if we change its contents

•Conversely, we could have two lists that happen to have the same contents, but are different

19

>>> a = [10]
>>> b = [10]
>>> a == b
True
>>> b.append(20)
>>> a
[10]
>>> b
[10, 20]
>>> a == b
False

>>> a = [10]
>>> b = a
>>> a == b
True
>>> a.append(20)
>>> a
[10, 20]
>>> b
[10, 20]
>>> a == b
True

Identity Operators

Identity

<exp0> is <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to the same object

Equality

<exp0> == <exp1>

evaluates to True if both <exp0> and <exp1> evaluate to equal values

Identical objects are always equal values

20

(Demo)

Equality (`==`) vs identity (`is`)

lst1 and lst2 point to different objects, but have
the same values

 lst1 and lst3 point to the same object

=> Equality (lst1 == lst2) => Identity (lst1 is lst3)
Aka “Value equality” Aka “Identity equality”

On the other hand:
>>> lst1 == lst2
True
>>> lst1 is lst2
False

Although `lst1` has
"value equality" to
`lst2`, they point to

different objects (have
different identities)

Mutation and Names

If multiple names refer to the same mutable object (directly or indirectly), then a change to that object is reflected in the value
of all of these names.

2
2

s = [2, 7, [1, 8]]
t = s[2]
t.append([2])
e = s + t
t[2].append(8)
print(e)

Question: What numbers are printed (and how many of them)?

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B2,%207,%20%5B1,%208%5D%5D%0At%20%3D%20s%5B2%5D%0At.append%28%5B2%5D%29%0Ae%20%3D%20s%20%2B%20t%0At%5B2%5D.append%288%29%0Aprint%28e%29%0A&cumulative=true&curInstr=6&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Answer: [2, 7, [1, 8, [2, 8]], 1, 8, [2, 8]]

PythonTutor: [link]

https://pythontutor.com/cp/composingprograms.html#code=s%20%3D%20%5B2,%207,%20%5B1,%208%5D%5D%0At%20%3D%20s%5B2%5D%0At.append%28%5B2%5D%29%0Ae%20%3D%20s%20%2B%20t%0At%5B2%5D.append%288%29%0Aprint%28e%29%0A&cumulative=true&curInstr=6&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

(Aside) How does Python implement the `is` operator?

 How does Python implement the `is` operator?
 Intuitive (visual) answer: `a is b` is True iff `a` points to the same exact object as `b` points to.

>>> lst1 is lst2
False
>>> lst1 is lst3
True

(Aside) How does Python implement the `is` operator?
 How does Python implement the `is` operator?
 Technical answer: `a is b` is True iff `a` points to the same memory address as `b` points to.

>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
>>> lst3 = lst1
>>> id(lst1)
1906951142144
>>> id(lst2)
1906951128448
>>> id(lst3)
1906951142144

>>> lst1 is lst2
False
>>> lst1 is lst3
True
>>> id(lst1) == id(lst2)
False
>>> id(lst1) == id(lst3)
True

These are memory
addresses! Eg somewhere in
your CPU RAM

Tip: think of RAM as a long
array/list, and an address as
an index into the list.

Thus, the `is` operator is actually comparing memory
addresses behind the scenes.

(Aside) Python’s `id()` function

 In Python, each object has a function `id()` which returns its "memory address"
 CPU memory (random access memory, aka “RAM”)
 Example: In 2024, a Macbook Pro 14" has 8 GB - 36 GB CPU RAM
 Every Python object (eg list, string, etc) lives somewhere in your CPU memory.

• Aside: GPU (graphical processing units) have their own separate GPU memory. State-of-the-art ML models (like
ChatGPT, etc) are notoriously GPU-memory intensive

 Bill Gates once said* in 1981 “640K of memory should be enough for anybody.”
• * Not actually true, but it makes a funny story

 Related courses: CS61C (Architecture), CS162 (Operating Systems), CS164 (Programming Languages and Compilers)

Credit: https://www.techspot.com/article/2024-anatomy-ram/

https://groups.google.com/g/alt.folklore.computers/c/mpjS-h4jpD8/m/9DW_VQVLzpkJ
https://www.techspot.com/article/2024-anatomy-ram/

