
Welcome to Data C88C!

Lecture 12: Objects
Thursday, July 10th, 2025
Week 3
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Read midterm Ed post: [link]
● Lab07, HW07 released!
● Next week:

• Midterm: Tuesday July 15th, 3pm - 5pm
• No lecture Monday (July 14th), Tuesday (July 15th)
• No labs (July 15th, July 17th)
• Modified office hour schedule (to be announced)

https://edstem.org/us/courses/79702/discussion/6812483

Lecture Overview

● Object Oriented Programming (OOP)
● Abstractions (Maps project)

Object-Oriented Programming (OOP)

● Main idea
○ Encapsulate both data and behavior together

● Most modern programming languages support OOP
○ Python, Java, C++, etc.

● What does it look like?
class Person:
 def __init__(self, name, age):
 self.name = name
 self.age = age
 def have_birthday(self):
 self.age += 1
 print("Happy birthday!", self.name, "is now:", self.age)
 return self.age

Name: Paul
Age: 27

Name: Ringo
Age: 29

>>> paul = Person("Paul", 27)
>>> ringo = Person("Ringo", 29)
>>> ringo.age
30

`ringo` is a Person instance that contains both data/state (`name`,
`age`) and behavior (methods like: `have_birthday()`)(Demo: 12.py:Demo00)

Object-Oriented Programming is About Design

"In my version of computational thinking, I
imagine an abstract machine with just the data
types and operations that I want. If this machine
existed, then I could write the program I want.
But it doesn’t. Instead I have introduced a bunch
of subproblems — the data types and
operations — and I need to figure out how to
implement them. I do this over and over until I’m
working with a real machine or a real
programming language. That’s the art of design."

— Barbara Liskov,
 Turing Award Winner, UC Berkeley '61.
Full interview

https://www.quantamagazine.org/barbara-liskov-is-the-architect-of-modern-algorithms-20191120/

Objects

•An object is the instance of a class.

Analogy:
A "class" is a
"blueprint", or "factory"

An "object" is an actual
"built/instantiated"
entity based off the
blueprint (class)

In the previous slide:
`Person` is the class,
and the `ringo` object
is an instance of the

`Person` class.

Objects

•Objects are concrete instances of classes in memory.

•They have state

• mutable vs immutable (lists vs tuples)

• Methods are functions that belong to an object

•Objects do a collection of related things

•In Python, everything is an object

• All objects have attributes

• Manipulation happens through methods

Example: `list` is a class!
>>> list
<class 'list'>
`my_nums` is a `list` instance
>>> my_nums = [1, 2, 3]
>>> type(my_nums)
<class 'list'>
call the `list.append()` method
>>> my_nums.append(42)

Class Statements

Classes

A class describes the behavior of its instances

Idea: All bank accounts have a balance and an account
holder; the Account class should add those attributes to
each newly created instance

>>> a = Account('John')
>>> a.holder
'John'

>>> a.balance
0
>>> a.deposit(15)
15

>>> a.withdraw(10)
5

>>> a.balance
5

>>> a.withdraw(10)
'Insufficient funds'

Idea: All bank accounts share a withdraw method and a
deposit method

9

 balance and holder are
 attributes

 deposit and withdraw
 are methods

The Account Class

Methods are functions defined in a class statement

class Account:

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

1
0

`self` is the instance of the Account class on which deposit was invoked: a.deposit(10)

`__init__` is a special method name for the function that constructs an Account instance

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0
>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'(Demo: 12.py:Demo01)

Aka "constructor"

Discussion Question: Create Many Accounts

Write a function create that takes a list of strings called names. It returns a dictionary in which each name is a key, and its
value is a new Account with that name as the holder. Deposit $5 in each account before returning.

1
1

def create(names):
 """Creates a dictionary of accounts, each with an initial deposit of 5.

 >>> accounts = create(['Alice', 'Bob', 'Charlie'])
 >>> accounts['Alice'].holder
 'Alice'
 >>> accounts['Bob'].balance
 5
 >>> accounts['Charlie'].deposit(10)
 15
 """
 result = ___
 for a in ________________:

 return result

{name: Account(name) for name in names}
result.values()

a.deposit(5)

(for reference)
class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 ...

Another Class example: the Point class
class Point:
 # Constructor
 def __init__(self, x, y):
 self.x = x # instance vars
 self.y = y
 # Getters
 def get_x(self):
 return self.x
 def get_y(self):
 return self.y
 # Instance Methods
 def distance_l2(self, pt_other):
 # Returns the L2 distance between myself
 # (self) and `pt_other`.

>>> pt1 = Point(1, 2)

access instance variables either via
getter methods, or directly
>>> pt1.get_x()
1
>>> pt1.x
1

call a method on `pt1`
>>> pt2 = Point(3, 4)
>>> pt1.distance_l2(pt2)
2.8284271247461903

Question: implement the `distance_L2()` method.

Recall: distance_L2 = √((x₂ - x₁)² + (y₂ - y₁)²)

Hint: use the `sqrt()` function:
>>> from math import sqrt

Or: use `num ** 0.5` as sqrt(num).

 return ((self.x - pt_other.x) ** 2
 + (self.y - pt_other.y) ** 2) ** 0.5

Abstractions ("Maps" project)

● In Project01 ("Maps"), you are asked to work with the `restaurant` and `user` abstract data type, along
with selector and constructor functions, and an "abstraction barrier"

●

Example: the point ADT

Suppose we wanted to define a “2d point” data type. A 2d point has an x coordinate, and a y coordinate.

Question: in Python (without using OOP), how would you represent a 2d point?

Answer: Let’s represent a 2d point as a list with two elements: [int x, int y]

Note: there are many ways you could have implemented this

Example: the point ADT

An “undisciplined” way of working with our “2d point” data type would be to work at the Python list level, writing code like
this:

point_a = [1, 2]
point_b = [4, 5]

def distance_l2(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((p1[0] - p2[0]) ** 2 + (p2[1] - p2[1]) ** 2) ** 0.5

>>> print(f"dist btwn point_a and point_b: {distance_l2(point_a, point_b)}")
dist btwn point_a and point_b: 3.0
>>> print(f"x coord of point_a is: {point_a[0]}")
x coord of point_a is: 1
>>> print(f"y coord of point_a is: {point_a[1]}")
y coord of point_a is: 2

Example: the point ADT

• While it does work, the resulting code has the following issues:
• There is no abstraction in the `distance_l2()` function. It assumes that a point is a list [x, y], and does direct list

indexing
• Aka “assumes the 2d point internal representation”

point_a = [1, 2]
point_b = [4, 5]

def distance_l2(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((p1[0] - p2[0])**2 + (p2[1] - p2[1])**2)**0.5

This code only works if p1, p2 are lists of the
format [x, y]. Brittle code.

Example: the point ADT

• What if we need to change the 2d point internal representation?
• Example: suppose we want to attach a “str color” to a point?

point_a = [1, 2]
point_b = [4, 5]

def distance_l2(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((p1[0] - p2[0])**2 + (p2[1] - p2[1])**2)**0.5

Now, this function will break! We need to change (refactor) all code that
uses our 2d point data type to adjust to the new internal representation

point_a = ["red", 1, 2]
point_b = ["blue", 4, 5]

point_a = [1, 2]
point_b = [4, 5]

def distance_l2(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((p1[0] - p2[0])**2 + (p2[1] - p2[1])**2)**0.5

def distance_l1(p1, p2):
 # ...
def norm_l2(p1, p2):
 # ...
def norm_l1(p1, p2):
 # ...
def sum_vals(p1, p2):
 # ...
def cosine_similarity(p1, p2):
 # ...
...

Example: the point ADT

• It may seem OK if it’s just one function, but in larger software projects, there
may be literally millions of lines of code to change…

point_a = ["red", 1, 2]
point_b = ["blue", 4, 5]

Oops, we’ve got our work cut out
for us…

And, worse, this is tedious,
manual, error-prone work…

…could we have planned better
ahead to avoid this pain?

Example: the point ADT

• Idea: let’s implement `distance_l2()` in a more abstract, generic way. Notably,
one that doesn’t assume the internal representation of the point data type.

point_a = [1, 2]
point_b = [4, 5]

def distance_l2(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((p1[0] - p2[0])**2 + (p2[1] - p2[1])**2)**0.5

point_a = [“red", 1, 2]
point_b = [“blue", 4, 5]

p1[0], p2[0] is asking for “get
me the x coordinate”

Similarly, p1[1], p2[1] is asking for
“get me the y coordinate”

Example: the point ADT

• Idea: let’s implement `distance_l2()` in a more abstract, generic way. Notably,
one that doesn’t assume the internal representation of the point data type.

point_a = [1, 2]
point_b = [4, 5]

def distance_l2_abstract(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((get_x(p1) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)**0.5

point_a = [“red", 1, 2]
point_b = [“blue", 4, 5]

So, let’s just ask via get_x()! And, ask for y via get_y()

Example: the point ADT

• Finally, let’s define the constructor and selector functions to fully spec out
our point ADT

point_a = [1, 2]
point_b = [4, 5]

def distance_l2_abstract(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((get_x(p1) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)**0.5

point_a = [“red", 1, 2]
point_b = [“blue", 4, 5]

constructor
def create_point(x, y, color):
 return [color, x, y]

selectors
def get_x(point):
 return point[1]
def get_y(point):
 return point[2]
def get_color(point):
 return point[0]

Example: a Point ADT

constructor
def create_point(x, y, color):
 return [color, x, y]

selectors
def get_x(point):
 return point[1]
def get_y(point):
 return point[2]
def get_color(point):
 return point[0]

Operators
def distance_l2_abstract(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((get_x(p1) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)**0.5

This is the ADT. (“Under the hood”, “below
the abstraction barrier”, etc).
It’s allowed to know details about the
internal representation of the data type, eg
“a Point is implemented as a list of three
elements”

Example: a Point ADT

constructor
def create_point(x, y, color):
 return [color, x, y]

selectors
def get_x(point):
 return point[1]
def get_y(point):
 return point[2]
def get_color(point):
 return point[0]

Operators
def distance_l2_abstract(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((get_x(p1) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)**0.5

These are the operations that are built on top of the
abstractions defined by the ADT.
They are NOT allowed to know details about the
internal representation.
Instead, they should only use the ADT’s “public-facing
API/spec”, aka the constructors and selectors

This is the “abstraction barrier”.
Don’t cross the boundary!

Example: a Point ADT

constructor
def create_point(x, y, color):
 return [color, x, y]

selectors
def get_x(point):
 return point[1]
def get_y(point):
 return point[2]
def get_color(point):
 return point[0]

Operators
def distance_l2_abstract(p1, p2):
 # Calculates L2 distance between 2d points p1, p2
 return ((get_x(p1) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)**0.5

This is the “abstraction barrier”.
Don’t cross the boundary!

Question: we want to change the Point internal
representation to be a dict, like: {"x": 1, "y": 2,
"color": "red"}. Make the changes to the ADT.

Answer:
constructor
def create_point(x, y, color):
 return {"x": x, "y": y, "color": color}

selectors
def get_x(point):
 return point["x"]
def get_y(point):
 return point["y"]
def get_color(point):
 return point["color"]

Note that no changes
are necessary to the

existing operators after
this dict refactor.

`distance_l2_abstract()
` still works!

