Welcome to Data C88C!

Lecture 12: Objects

Thursday, July 10th, 2025

Week 3

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e Read midterm Ed post: [link]
e Lab07, HWO7 released!
e Next week:
* Midterm: Tuesday July 15th, 3pm - S5pm
* No lecture Monday (July 14th), Tuesday (July 15th)
* No labs (July 15th, July 17th)
* Modified office hour schedule (to be announced)

https://edstem.org/us/courses/79702/discussion/6812483

| ecture Overview

e Object Oriented Programming (OOP)
e Abstractions (Maps project)

Object-Oriented Programming (OOP)

e Main idea

o Encapsulate both data and behavior together
e Most modern programming languages support OOP

o Python, Java, C++, etc.
e \What does it look like?

Name: Paul Name: Ringo
Age: 27 Age: 29

(Demo: 12.py:Demo00)

class Person:

def __1init__(self, name, age):
self.name = name
self.age = age
def have_birthday(self):
self.age += 1
print("Happy birthday!", self.name, "1s now:", self.age)
return self.age

>>> paul = Person("Paul", 27)
>>> ringo = Person('"Ringo'", 29)
>>> ringo.age

30

W_J
w

‘ringo’ is a Person instance that contains both data/state (name’,
‘age) and behavior (methods like: "have birthday())

Object-Oriented Programming is About Design

"In my version of computational thinking, |
imagine an abstract machine with just the data
types and operations that | want. If this machine
existed, then | could write the program | want.

But it doesn't. Instead | have introduced a bunch
of subproblems — the data types ana
operations — and | need to figure out how to
implement them. | do this over and over until I'm
working with a real machine or a real
programming language. That's the art of design."

— Barbara Liskov,
Turing Award Winner, UC Berkeley '61.
Full interview

https://www.quantamagazine.org/barbara-liskov-is-the-architect-of-modern-algorithms-20191120/

Objects

*An object is the instance of a class.

class

TN

objects

Analogy:
A"class" is a
"blueprint”, or "factory”

An "object” is an actual
"built/instantiated”
entity based off the
blueprint (class)

In the previous slide:
‘Person’ is the class,
and the ringo object
IS an instance of the
"Person’ class.

Objects

*Objects are concrete instances of classes in memory.

-They have state # Example: "list s a class!
| | >>> list
» mutable vs immutable (lists vs tuples) cclass 'list'>
 Methods are functions that belong to an object # my_nums 1dis a list 1dnstance

>>> my_nums = [1, 2, 3]

>>> type(my_nums)
°In Python, everything is an object <class 'l9st'>

*Objects do a collection of related things

» All objects have attributes # call the "list.append() method

. . >>> my_nums.append(42)
* Manipulation happens through methods

Class Statements

Classes

A class describes the behavior of its instances

— | |
Idea: All bank accounts have a balance and an account 22 a Account (JO@)

~
holder; the Account class should add those attributes to '>J> >h a'. holder ————
each newly created instance onn balance and holder are
attributes
>>> a.balance
0 N Y
>>> a.deposit(1l5) <(7 | | A
Idea: All bank accounts share a withdraw method and a 15 deposit and withdraw
deposit method are methods
>>> a.withdraw(10) _ J
5

>>> a.balance
5

>>> a.withdraw(10)
'"Tnsufficient funds'

The Account Class

class Account: Aka "constructor”
("__1n1t__ Is a special method name for the function that constructs an Account instance]
V

def __init__(self, account_holder):
self.balance = 0
self.holder = account _holder

(‘self is the instance of the Account class on which deposit was invoked: a.deposit(10))
\V
def deposit(self, amount): >>> a = Account('John')
self.balance = self.balance + amount >>> a.holder
return self.balance 'John'
def withdraw(self, amount): >>> a.balance
if amount > self.balance: 0
return 'Insufficient funds' >>> a.deposit(15)
self.balance = self.balance - amount 15
return self.balance >>> a.withdraw(10)
5
>>> a.balance
Methods are functions defined in a class statement 5

>>> a.withdraw(10)
(Demo: 12.py:Demo01) 'Insufficient funds'

Discussion Question: Create Many Accounts

Write a function create that takes a list of strings called names. It returns a dictionary in which each name is a key, and its
value is a new Account with that name as the holder. Deposit $5 in each account before returning.

def create(names):
"""Creates a dictionary of accounts, each with an initial deposit of 5.

>>> accounts = create(['Alice', 'Bob', 'Charlie'])
>>> accounts|['Alice'].holder

"Alice' # (for reference)

>>> accounts|['Bob'].balance class Account:

5 def __1init__(self, account_holder):

>>> accounts['Charlie'].deposit(10) zi?ﬁﬂggﬁe::agcount der

15 def deposit(self, amount)?

S self.balance = self.balance + amount
result = {name: Account(name) for name in names} return self.balance

for a in result.values()

return result

Another Class example: the Point class

class Point: >>> ptl = Point(1l, 2)
Constructor
def __+dinit__(self, x, y): # access i1nstance variables either via

getter methods, or directly
>>> ptl.get_x()

self.x = X # instance vars

self.y = vy
Getters !
>>> ptl.
def get_x(self): 1 PES-~
return self.x
def get_y(self): # call a method on "ptl’
return self.y >>> pt2 = Point(3, 4)
Instance Methods >>> ptl.distance_12(pt2)
def distance_l12(self, pt_other): 2.8284271247461903

Returns the L2 distance between myself

(self) and pt_other . Question: implement the “distance_L2()" method.

return ((self.x - pt_other.x) *%x 2
+ (self.y - pt_other.y) *x 2) **x 0.5 Recall: distance L2 = V((Xz - x1)2 + (Y2 - y1)?)

Hint: use the sqgrt() function:
>>> from math import sqgrt

Or:use num ** 0.5 as sqrt(num).

Abstractions ("Maps" project)

e |n Project01 ("Maps"), you are asked to work with the restaurant and user abstract data type, along
with selector and constructor functions, and an "abstraction barrier”

Example: the point ADT

Suppose we wanted to define a “2d point” data type. A 2d point has an x coordinate, and a y coordinate.

Question: in Python (without using OOP), how would you represent a 2d point?

Answer: Let's represent a 2d point as a list with two elements: [int x, int y]

Note: there are many ways you could have implemented this

Example: the point ADT

An “undisciplined” way of working with our “2d point® data type would be to work at the Python list level, writing code like
this:

point_a |1, 2]
point_b = [4, 5]

def distance_12(pl, p2):
Calculates L2 distance between 2d points pl, p2

return ((pl[O0] - p2[0]) **x 2 + (p2[1] - p2[1]) ** 2) **x 0.5

>>> print(f"dist btwn point_a and point_b: {distance_12(point_a, point_b)}")
dist btwn point_a and point_b: 3.0

>>> print(f"x coord of point_a 1is: {point_a[0]}")

x coord of point_a 1is: 1

>>> print(f"y coord of point_a i1s: {point_a[l]}")

y coord of point_a i1s: 2

Example: the point ADT

* While it does work, the resulting code has the following issues:

* There is no abstraction in the distance |2() function. It assumes that a point is a list [X, y], and does direct list
iIndexing

. Aka “assumes the 2d point internal representation”

point_a
point_Db

J

1, 2
4, 5

def distance_12(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((pl[0] - p2[0])**x2 + (p2[1] - p2[1])**2)**0.5

—

This code only works if p1, p2 are lists of the
format [x, y]. Brittle code.

Example: the point ADT

 What if we need to change the 2d point internal representation?
Example: suppose we want to attach a “str color” to a point?

point a
point b

["red”, 1, 2]
["blue", 4, 5]

def distance_12(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((pl[0] - p2[0])**x2 + (p2[1] - p2[1])**2)**0.5

—

Now, this function will break! We need to change (refactor) all code that
uses our 2d point data type to adjust to the new internal representation

Example: the point ADT

* |t may seem OK if it's just one function, but in larger software projects, there
may be literally millions of lines of code to change...

point_a = y 2] point_a = ["red", 1, 2]
poirt”Db = [4, 5] point_b = ["blue", 4, 5]
def distance_12(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((pl[0] - p2[0])**2 + (p2[1] - p2[1])**2)**x0.5 Oops, we've got our work cut out
for us...
def distance_11(pl, p2): And, worse, this Is tedious,
o, manual, error-prone work...
def norm_12(pl, p2): ...could we have planned better
S ahead to avoid this pain?
def norm_11(pl, p2):
oL
def sum_vals(pl, p2):
oL
def cosine_similarity(pl, p2):
oL

Example: the point ADT

* |dea: let's implement distance 12() in a more abstract, generic way. Notably,
one that doesn’t assume the internal representation of the point data type.

point a
point b

[“red”, 1, 2]
[“blue”, 4, 5]

def distance_12(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((pl[0] - p2[0])**x2 + (p2[1] - p2[1])**2)**0.5

p1[0], p2[0] is asking for “get Similarly, p1[1], p2[1] is asking for
me the x coordinate” “get me the y coordinate”

Example: the point ADT

* |dea: let's implement distance 12() in a more abstract, generic way. Notably,
one that doesn’t assume the internal representation of the point data type.

“red", 1, 2]
“blue", 4, 5]

point_a
point_b

def distance_12_abstract(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((get_x(pl) - get_x(p2))**x2 + (get_y(p2) - get_y(p2))**2)*x0.5

S —— —— S
So, let’s just ask via get_x()! And, ask for y via get_y()

Example: the point ADT

* Finally, let’'s define the constructor and selector functions to fully spec out
our point ADT

“red", 1, 2]
“blue", 4, 5]

point_a
point_b

point_a
PO

[
I-bl
)

def distance_12_abstract(pl, p2):
Calculates L2 distance between 2d points pl, p2

return ((get_x(pl) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**2)*x*x0.5

selectors

constructor. def get_x(point):
def create_point(x, y, color): return point[1]
return [color, x, y] def get_y(point):

return point[2]
def get_color(point):
return point[0]

Example: a Point ADT

constructor
def create_point(x, y, color):

return [color, x, Y] This is the ADT. (“Under the hood”, “below
the abstraction barrier”, etc).
selectors It's allowed to know details about the
def get_x(point): internal representation of the data type, eg
return point[1i] “a Point is implemented as a list of three
def get_y(point): elements’

return point[2]
def get_color(point):

return point[0]

-

Operators
def distance_12_abstract(pl, p2):

Calculates L2 distance between 2d points pl, p2

return ((get_x(pl) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**x2)**x0.5

Example: a Point ADT

constructor These are the operations that are built on top of the
def create_point(x, y, color): abstractions defined by the ADT.

return [color, X, vyl They are NOT allowed to know details about the
internal representation.
Instead, they should only use the ADT’s “public-facing
APl/spec”, aka the constructors and selectors

selectors

def get_x(point):
return point[1]

def get_y(point):
return point[2]

def get_color(point):
return point[0]

This is the “abstraction barrier”.
Don’t cross the boundary!

!

Operators

def distance_12_abstract(pl, p2):
Calculates L2 distance between 2d points pl, p2
return ((get_x(pl) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**x2)**x0.5

Example: a Point ADT

constructor
def create_point(x, y, color):
return [color, x, y]

selectors

def get_x(point):
return point[1]

def get_y(point):
return point[2]

def get_color(point):
return point[0]

Operators

Question: we want to change the Point internal
representation to be a dict, like: {"x": 1, "y": 2,
"color": "red"}. Make the changes to the ADT.

Answer:

constructor

def create_point(x, y, color):
return {"x": x, "y": vy, "color":

Note that no changes
are necessary to the
existing operators after
this dict refactor.
‘distance |2 _abstract()
- still works!

<

color}

selectors

def get_x(point):
return point["x"]

def get_y(point):
return point["y"]

def get_color(point):
return point['"color"]

This is the “abstraction barrier”.
Don’t cross the boundary!

!

def distance_12_abstract(pl, p2):
Calculates L2 distance between 2d points pl, p2

return ((get_x(pl) - get_x(p2))**2 + (get_y(p2) - get_y(p2))**x2)**x0.5

