Welcome to Data C88C!

Lecture 13: Attributes

Wednesday, July 16th, 2025

Week 3

Summer 2025

Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

e Midterm: congratulations on being done!

* Important: if you haven't taken the midterm and you intended to, please email cs88@berkeley.edu
ASAP

» Grading will be done within ~1-2 weeks
e HWO7, Lab07 due: Fri July 19th
e No Labs this week!
e Maps due: July 24th

* (k-means is neat!)

mailto:cs88@berkeley.edu

| ecture Overview

e Attributes
 Class attributes
* |nstance vs Class attributes

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression
The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object that is the value of the
<expression>

T |

! {fom_account.deposit(10)

Y mmm s EEm s s F B F O EEE O EES P EEE B EEE F EEE O EES § EES § EEE § ESS O S § Emm N Em B

{ Call expression j

>

...

Attribute Lookup

Looking Up Attributes by Name
Both instances and classes have attributes that can be looked up by dot expressions
<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of the dot expression

2. <name> is matched against the instance attributes of that object; if an attribute with that name exists, its
value is returned

3. If not, <name> Is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is returned instead

Discussion Question: Where's Waldo?

Question: For each class, write an expression with no quotes or + that evaluates to 'Waldo'

class Town:

def __1nit__(self, w, aldo):

if aldo ==
self.street

def f(self, x):
return x + 1

class Beach:
def __init__(self):
sand = ['Wal',

= {self.f(w): "Waldo'}

'do']

e

Reminder: s.pop(k) removes and

returns the item at index k

self.dig = sand.pop <

def walk(self, x):

self.wave = lambda y: self.dig(x) + self.dig(y)

return self

Answer:

>>> Town(l, 7).street[2]
'Waldo'

>>> Beach().walk(0) .wave(0)
'Waldo'

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes of the class, not the instance

class Account:
interest = 0.02 # A class attribute

def __1nit__(self, account_holder):
self.balance = 0
self.holder = account _holder

Additional methods would be defined here

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim'")

>>> tom_account.interest < \
0.02 The interest attribute is not part of the instance; it's
>>> jJjaim_account.interest part of the class!

0.02 - Y

(Demo)

Attribute Assignment Statements

.

p
Account class attribut}% interest: M M 0.05

(withdraw, deposit, __init__)

[

Instance attributes of balance: 0
jim_account holder: 'Jim’
Tnterest: 0.08

/

[

>>> jim_account = Account('Jim'")
>>> tom_account = Account('Tom')
>>> tom_account.interest

©.02

>>> jJjaim_account.interest

©.02

>>> Account.interest = 0.04

>>> tom_account.interest

©.04

>>> jJjaim_account.interest

©.04

.

Instance attributes of

tom account

\

J

balance:
holder:

0

"Tom'

>>> jim_account.interest =
>>> jim_account.interest

0.08

>>> tom_account.interest

0.04

>>> Account.interest =
>>> tom_account.interest

0.05

0.05

>>> jim_account.interest

0.08

0.08

Discussion Question: Class Attribute Assignment

Implement the Place class, which takes a name. Its print_history() method prints the name of the Place and then the
names of all the Place instances that were created before it.

class Place: >>> places = [Place(x*2) for x 1in range(10)]

last = None 4 N >>> places[4].print_history()
o OK to write self.lastor | °
def __1nit__(self, n): type(self.last) j
self.name = n - / 5
self.then = Place.last 0

___________ >>> pl 6] .print_histor

Placelast = self 12 pracestel.printm -
A 10
[Not ok to write self.last] o)
6
. . 4
def print_history(self): 5
©

print(self.name)
;¢ self.then

is not None:

Why OOP?

Next lecture, we will learn an

e OOP allows programmers to reason at a higher level of abstraction OOP technique that is not so

e EXx: work with "Point" objects, rather than "a two-element list [float x, float y]" easily handled via this
"function OOP" approach:
Question: try implementing this "Point’ class, but without OOP. inheritance

lint: try defining constructor/methods as functions. What obstacles do

you run into?
Answer: here's one way:
class Point:

num_points = 0 # global var
Constructor POINT_CLASS_VARS = {"num_points": 0}
def __init__(self, x, y): def point_constructor(x, y):
self.x, self.y = x, y # dnstance vars POINT_CLASS_VARS["num_points"] += 1
Point.num_points += 1 # class var return {"x": x, "y": y}
Instance Methods def point_get_x(pt):
def distance_12(self, pt_other): return pt["x"]
Returns the L2 distance between myself def point_get_y(pt):
(self) and pt_other . return pt["y"]
return ((self.x - pt_other.x) *x 2 def point_get_num_points():
+ (self.y - pt_other.y) %% 2) %% 0.5 return POINT_CLASS_VARS["num_points"]

def point_distance_12(pt_a, pt_b):
return ((point_get_x(pt_a) - point_get_x("x"))
xx 2 + (point_get_y(pt_a) - point_get_y(pt_b)) =xx

(Demo: 13.py:Demo00) 2) x* 0.5

