
Welcome to Data C88C!

Lecture 13: Attributes
Wednesday, July 16th, 2025
Week 3
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Midterm: congratulations on being done!
• Important: if you haven't taken the midterm and you intended to, please email cs88@berkeley.edu

ASAP
• Grading will be done within ~1-2 weeks

● HW07, Lab07 due: Fri July 19th
● No Labs this week!
● Maps due: July 24th

• (k-means is neat!)
●

mailto:cs88@berkeley.edu

Lecture Overview

● Attributes
• Class attributes
• Instance vs Class attributes

Method Calls

Dot Expressions

Methods are invoked using dot notation

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object that is the value of the
<expression>

tom_account.deposit(10)

Dot expression Call expression

5

(Demo)

Attribute Lookup

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of the dot expression

2. <name> is matched against the instance attributes of that object; if an attribute with that name exists, its
value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is returned instead

7

Both instances and classes have attributes that can be looked up by dot expressions

Discussion Question: Where's Waldo?

Question: For each class, write an expression with no quotes or + that evaluates to 'Waldo'

8

class Town:
 def __init__(self, w, aldo):
 if aldo == 7:
 self.street = {self.f(w): 'Waldo'}

 def f(self, x):
 return x + 1

class Beach:
 def __init__(self):
 sand = ['Wal', 'do']
 self.dig = sand.pop

 def walk(self, x):
 self.wave = lambda y: self.dig(x) + self.dig(y)
 return self

>>> Town(1, 7).street[2]
'Waldo'

>>> Beach().walk(0).wave(0)
'Waldo'

 Reminder: s.pop(k) removes and
returns the item at index k

Answer:

Class Attributes

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of the instance; it's
part of the class!

1
0

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

(Demo)

Attribute Assignment Statements

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04
>>> jim_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

interest: 0.02
(withdraw, deposit, __init__)

balance: 0
holder: 'Jim'

balance: 0
holder: 'Tom'

Account class attributes 0.04

interest: 0.08

0.05

11

 Instance attributes of
 jim_account

Instance attributes of
 tom_account

Discussion Question: Class Attribute Assignment

class Place:

 last = None

 def __init__(self, n):

 self.name = n

 self.then = ___________

 ___________ = self

 def print_history(self):

 print(self.name)

 if __________ is not None:

1
2

>>> places = [Place(x*2) for x in range(10)]
>>> places[4].print_history()
8
6
4
2
0
>>> places[6].print_history()
12
10
8
6
4
2
0

Implement the Place class, which takes a name. Its print_history() method prints the name of the Place and then the
names of all the Place instances that were created before it.

Place.last

OK to write self.last or
type(self.last)

Not ok to write self.last

Place.last

self.then.print_history()

self.then

Why OOP?

● OOP allows programmers to reason at a higher level of abstraction
● Ex: work with "Point" objects, rather than "a two-element list [float x, float y]"

Question: try implementing this `Point` class, but without OOP.
Hint: try defining constructor/methods as functions. What obstacles do
you run into?

class Point:
 num_points = 0
 # Constructor
 def __init__(self, x, y):
 self.x, self.y = x, y # instance vars
 Point.num_points += 1 # class var
 # Instance Methods
 def distance_l2(self, pt_other):
 # Returns the L2 distance between myself
 # (self) and `pt_other`.
 return ((self.x - pt_other.x) ** 2
 + (self.y - pt_other.y) ** 2) ** 0.5

global var
POINT_CLASS_VARS = {"num_points": 0}
def point_constructor(x, y):
 POINT_CLASS_VARS["num_points"] += 1
 return {"x": x, "y": y}
def point_get_x(pt):
 return pt["x"]
def point_get_y(pt):
 return pt["y"]
def point_get_num_points():
 return POINT_CLASS_VARS["num_points"]
def point_distance_l2(pt_a, pt_b):
 return ((point_get_x(pt_a) - point_get_x("x"))
** 2 + (point_get_y(pt_a) - point_get_y(pt_b)) **
2) ** 0.5

Answer: here's one way:

(Demo: 13.py:Demo00)

Next lecture, we will learn an
OOP technique that is not so

easily handled via this
"function OOP" approach:

inheritance

