
Welcome to Data C88C!

Lecture 14: Inheritance
Thursday, July 17th, 2025
Week 3
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Lab07, HW07 due Friday July 18th
● Maps due: Thursday July 24th
● Reminder: no lab today!

Lecture Overview

● OOP review
● Inheritance

Lab 6 Review

Lab 6 Question 2: Email
A Client can send an Email to its Server.

The Server then delivers it to the inbox of another Client.

To achieve this, a Server has a dictionary
called clients that can look up each Client instance by
the name of the Client.

5

class Email:
 def __init__(self, msg, sender, recipient_name):
 self.msg = msg
 self.sender = sender
 self.recipient_name = recipient_name

class Server:
 def __init__(self):
 self.clients = {}

 def send(self, email):
 # Append the email to the inbox of the client it is addressed to.

 ...

class Client:
 def __init__(self, server, name):
 self.inbox = []
 self.server = server
 self.name = name
 ...
 ...

self.clients[email.recipient_name].inbox.append(email)

Server dict Client list

Email

Question: fill out the
`Server.send()` method

Attribute Lookup Practice

Class Attributes
A class attribute can be accessed from either an instance or its class. There is only one value for a class attribute, regardless
of how many instances.

7

class Transaction:
 """A logged transaction.

 >>> s = [20, -3, -4]
 >>> ts = [Transaction(x) for x in s]
 >>> ts[1].balance()
 17
 >>> ts[2].balance()
 13
 """
 log = []

 def __init__(self, amount):
 self.amount = amount
 self.prior = _______________ # a list of Transactions
 self.log.append(self)

 def balance(self):
 """The sum of amounts for this transaction and all prior transactions"""
 return self.amount + sum(_______________________________)

Equivalently: list(type(self).log) or list(Transaction.log)

amount: -3
prior:

Transaction instance

amount: -4
prior:

Transaction instance

amount: 20
prior:

Transaction instance

empty list

Transaction class List

Always bound to some
Transaction instance

list(self.log)

[t.amount for t in self.prior]

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> tom_account.balance

10

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

• One of its instance attributes, or

• One of the attributes of its class

8

>>> getattr(tom_account, 'balance')

10

>>> hasattr(tom_account, 'deposit')

True

Example: Close Friends
class Friend:
 def __init__(self, name):
 self.name = name
 self.heard_from = {}

 def hear_from(self, friend):
 if friend not in self.heard_from:
 self.heard_from[friend] = 0
 self.heard_from[friend] += 1
 friend.just_messaged = self

 def how_close(self, friend):
 bonus = 0

 if ______________________________ and ______________________________:
 bonus = 3

 return ______________________________ + bonus

 def closest(self, friends):

 return max(friends, key=______________________________)
9

hasattr(self, 'just_messaged') self.just_messaged == friend

friend.heard_from.get(self, 0)

A Friend instance tracks the number of times they hear_from
each other friend.

A Friend just_messaged the friend that most recently heard
from them.

how_close is one Friend (self) to another (friend)?

• The number of times friend has heard from self
• Plus a bonus of 3 if they are the one that most recently heard

from self
self's closest friend among a list of friends is the one with the
largest self.how_close(friend) value

self.how_close

Inheritance

or
 return super().withdraw(amount + self.withdraw_fee)

Inheritance Example

A CheckingAccount is a specialized type of Account

>>> ch = CheckingAccount('Tom')
>>> ch.interest # Lower interest rate for checking accounts
0.01
>>> ch.deposit(20) # Deposits are the same
20
>>> ch.withdraw(5) # Withdrawals incur a $1 fee
14

Most behavior is shared with the base class Account

11

class CheckingAccount(Account):
 """A bank account that charges for withdrawals."""
 withdraw_fee = 1
 interest = 0.01
 def withdraw(self, amount):
 return Account.withdraw(self, amount + self.withdraw_fee)

Aside: which of these is
best? Turns out the

answer is complicated.
Personally, in 2025: I
prefer `super()`: [link]

https://www.reddit.com/r/Python/comments/6j5nzh/sosuper_won_right/

Looking Up Attribute Names on Classes

To look up a name in a class:

1. If it names an attribute in the class, return the attribute value.

2. Otherwise, look up the name in the base class, if there is one.

>>> ch = CheckingAccount('Tom') # Calls Account.__init__
>>> ch.interest # Found in CheckingAccount
0.01
>>> ch.deposit(20) # Found in Account
20
>>> ch.withdraw(5) # Found in CheckingAccount
14

Base class attributes aren't copied into subclasses!

1
2

Example: Three Attributes

class A:
 x, y, z = 0, 1, 2

 def f(self):
 return [self.x, self.y, self.z]

class B(A):
 """What would Python Do?

 >>> A().f()

 [0, 1, 2]

 >>> B().f()

 """
 x = 6
 def __init__(self):
 self.z = 'A'

13

[6, 1, 'A']

x: 0
y: 1

A class

z: 2

x: 6
B class

z: 'A'
B instance

A instance

Aside: Multiple inheritance

● Most OOP languages (including Python) support inheriting from
multiple classes ("Multiple inheritance")

● In this class, we will not be covering multiple inheritance

class A:
 ...

class B:
 ...

class C(A, B):
 ...

C inherits from
both `A` and `B`

