
Welcome to Data C88C!

Lecture 15: Linked Lists
Monday, July 21st, 2025
Week 5
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu


Announcements

● Project 02 ("Ants") released today!
• Checkpoint: due August 4th
• All due: August 11th

● Mid-semester feedback form: [link]
• Submit by Wednesday July 28th 11:59pm. If 75% of the class completes the survey by the deadline, we 

will give 1 point of extra credit to everyone!
● Midterm grades will be released by Friday July 25th

• "Change Grade Option" deadline: August 1st

https://docs.google.com/forms/d/e/1FAIpQLSclGvKrPwCoSTjBUtDVHNs3zb10vvzB3il2Pmip6UB0I6DwtQ/viewform


Lecture Overview

● Linked Lists
• Destructive vs non-destructive functions



Linked Lists: `Link` (Recap)

● A fundamental data structure. Consists of a value (`first`) and the remaining values (`rest`).
● Recursively defined: `rest` is itself a `Link` instance
● Heterogeneous elements: values in `Link` can be anything (eg a mix of ints and strs, or even other 

`Link` instances!)

'hi' 42

`first` `rest`

1

At a high level, contains the values: 'hi', 42, 1
The above translated in terms of `Link`:

class Link:
    """A linked list with a first element 
and the rest."""
    empty = ()
    def __init__(self, first, rest=empty):
        self.first = first
        self.rest = rest

lst = Link('hi', Link(42, Link(1)))

Default 
argument 

value

Tip: `empty` is a special value 
("sentinel") that represents 
the end of the list.

Link Link Link



Exercise: Finding the Longest Song in a linked list

Question: Given a linked list of Songs, which Song is the longest? Implement it recursively first.

>>> song1 = Song("Golden Slumbers", "The Beatles", 92)
>>> song2 = Song("A Day In The Life", "The Beatles", 337)
>>> album1 = Link(song1, Link(song2))
>>> longest_song(album1)
Song(A Day In The Life, The Beatles, 337)

def longest_song(album):

    if album == Link.empty:

        return None

    if album.rest == Link.empty:

        return ________________

    rest_longest = ________________

    if album.first.length > ______________________:

        return ________________

    else:

        return ________________

class Song:
    def __init__(self, name, artist, length):
        self.name = name
        self.artist = artist
        self.length = length
    def __repr__(self):
        return f"Song({self.name},{self.artist},{self.length})"

Recursive approach:
Base case: the longest song of a one-song album is the 
song itself.
Recursive structure: to calculate the longest song of an 
N-song album, first calculate the longest song of the last 
(N-1) songs, then compare it with the first song.

album.first

longest_song(album.rest)

rest_longest.length

album.first

rest_longest

"Edge" case



Exercise: Finding the Longest Song in a linked list

Question: Given a linked list of Songs, which Song is the longest? Implement it iteratively (for/while loop).

>>> song1 = Song("Golden Slumbers", "The Beatles", 92)
>>> song2 = Song("A Day In The Life", "The Beatles", 337)
>>> album1 = Link(song1, Link(song2))
>>> longest_song_iter(album1)
Song(A Day In The Life, The Beatles, 337)

def longest_song_iter(album):

    if album == Link.empty:

        return None

    cur_link, cur_longest = album.rest, album.first

    __________________________________________________

    __________________________________________________

    __________________________________________________

    __________________________________________________

    return cur_longest

class Song:
    def __init__(self, name, artist, length):
        self.name = name
        self.artist = artist
        self.length = length
    def __repr__(self):
        return f"Song({self.name},{self.artist},{self.length})"

Implementation idea: "walk" through the linked list, 
and keep track of the longest song.
When you reach the end of the list (`empty`), return 
the longest song encountered.

    while cur_link != Link.empty:

        if cur_link.first.length > cur_longest.length:

            cur_longest = cur_link.first

        cur_link = cur_link.rest

`cur_link`: a "pointer" that steps through the linked list. 
This is a common pattern.



Discussion 8



Linear-Time Intersection of Sorted Linked Lists

8

Given two sorted linked lists with no repeats, return the number of elements that appear in both.

3 4 6 7 9 10

1 3 5 7 8 def fast_overlap(s, t):

    k = 0

    while s and t:

        if s.first == t.first:

            _________________________________

        elif s.first < t.first:

            _______________

        elif s.first > t.first:

            _______________

    return k

k, s, t, = k + 1, s.rest, t.rest

s = s.rest

t = t.rest

def fast_overlap(s, t):

    if s is Link.empty or t is Link.empty:

        return 0

    if s.first == t.first:

        return _________________________________

    elif s.first < t.first:

        return ________________________

    elif s.first > t.first:

        return ________________________

1 + fast_overlap(s.rest, t.rest)

fast_overlap(s.rest, t)

fast_overlap(s, t.rest)

Implement it recursively and iteratively.
s:

t:



Link interleave: "constructively"

Question: given two linked lists `lnk1, lnk2`, create a new linked list that contains the elements of `lnk1, lnk2` interleaved as 
follows:

>>> lnk1 = Link(1, Link(2, Link(3)))
>>> lnk2 = Link(4, Link(5))
>>> out1 = interleave(lnk1, lnk2)
>>> out1
<1 4 2 5 3>

def interleave(lnk1, lnk2):
    if lnk1 == Link.empty:
        return link_copy(lnk2)
    elif lnk2 == Link.empty:
        return link_copy(lnk1)
    else:
        out_rest = interleave(lnk1.rest, lnk2.rest)
        return Link(lnk1.first, Link(lnk2.first, out_rest))

1 2 3

4 5

1 2 3

4 5

Implement it recursively:

def link_copy(lnk):
    if lnk == Link.empty:
        return lnk
    return Link(lnk.first, link_copy(lnk.rest))

Question: why is it important for us 
to do `return link_copy(lst2)`? What 

if we instead did `return lst2`?

Answer: `return lst2` would appear 
to work, but it wouldn't be creating a 

copy of `lst2`: changes to `lst2` 
would propagate to `out1`, which 

violates our requirement to create a 
new linked list.

lnk1: 

lnk2: 

out1: 



Link interleave: "destructively"

Question: given two linked lists `lnk1, lnk2`, modify `lnk1, lnk2` such that `lnk1` contains the elements of `lnk1, lnk2` 
interleaved as follows:

>>> lnk1 = Link(1, Link(2, Link(3)))
>>> lnk2 = Link(4, Link(5))
>>> interleave_mut(lnk1, lnk2)
>>> lnk1
<1 4 2 5 3>

def interleave_mut(lnk1, lnk2):

    if lnk1 == Link.empty or lnk2 == Link.empty:

        return

    else:

        out_rest = interleave_mut(lnk1.rest, lnk2.rest)

        lnk1.rest = lnk2

        lnk2.rest = out_rest

1 2 3

4 5

1 2 3

4 5

You must not create any new `Link` instances, instead modify the input linked lists 
"in place". Implement it recursively:

lnk1: 

lnk2: 

lnk1: 

lnk2: 

Linked list "surgery": changing `rest` 
pointers!



Regarding "constructive" and "destructive" functions

Type Behavior Pros Cons

Constructive 
("non-destructive")

Creates "new" things.
Ex: "Given a list of integers, return a new 
list of integers with every integer squared"

Implementation is typically 
easier.
Constructive code is often 
easier to understand.

Typically less performant than 
destructive functions, due to 
overhead of creating new 
instances (and additional 
memory usage).

Destructive Modifies (mutates) inputs "in place".
Ex: "Given a list of integers, mutate the 
list so that each value is squared"

Can be more performant than 
constructive functions.

Implementation is typically 
trickier to get right.
Destructive code can be tricky 
to debug.

(Personal advice) prioritize legibility and ease of maintenance, and prefer 
constructive code until you have to care about performance.
And even then: only optimize the code that is actually slow! 
Requires benchmarking/profiling your code to identify slow spots. Often does 
not even boil down to "constructive" vs "destructive" code anyways...

"We should forget about small 
efficiencies, say about 97% of the 
time: premature optimization is 

the root of all evil": Donald Knuth


