
Welcome to Data C88C!

Lecture 16: Data Examples
Tuesday, July 22nd, 2025
Week 5
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● Ants project is out!
● Mid-semester survey feedback: [link]

• If 75% of the class completes this form by Monday July 28th at 11:59 PM, everyone will receive 1 point
of extra credit! If this goal is not met, nobody will receive the extra point.

https://edstem.org/us/courses/79702/discussion/6831459

Lecture Overview

● More data examples
● Data structure overview thus far

• Python builtins: list, dict
• Linked list (`Link`)

● Why choose one data structure over another?
•

Data structures in C88C (so far)

● Python built-ins: list, dict
● Linked list (`Link`)
● Why should we use one over the other?
● One answer: performance

`Link`: operations

● Consider a linked list (`Link`) with length N.

Question: In terms of N, how long does it take to
append a new element to the end of the linked list?

Let's use "`rest` pointer traversals" as our unit of time

1 2 99...lnk1:

lnk1.append(Link(100))

1 2 99...lnk1: 100

Answer: it depends on the implementation of
`lnk1.append()`. But, here's a simple
implementation: start from the first `Link` instance,
and follow all `rest` pointers until we reach the end.
This would take N `rest` pointer traversals.

class Link:
 empty = ()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def append(self, lnk):
 last_lnk = get_last(self)
 last_lnk.rest = lnk

def get_last(lnk):
 if lnk.rest == Link.empty:
 return lnk
 return get_last(lnk.rest)

`Link`: operations

● Consider a linked list (`Link`) with length N.

Question: In terms of N, how long does it take to
insert a new element at the beginning of the linked
list?

Let's use "`rest` pointer traversals" as our unit of time

1 2 99...lnk1:

lnk1.insert_start(42)

1 2 99...lnk1: 100

Answer: 0 `rest` pointer traversals. Can be
implemented via a single pointer assignment:

class Link:
 empty = ()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def append(self, lnk):
 last_lnk = get_last(self)
 last_lnk.rest = lnk

 def insert_start(self, val):
 self.rest = Link(val, rest=self.rest)

42

Tip: cs61B does a deep dive into
this kind of stuff. It's a neat class!

Comparing data structures

● Using this methodology (count number of operations), we can quantify the performance of the `Link` class
operations, and compare it to other data structures like: list, dict

● Note: Rather than saying "N operations", we'll use notation "O(N)" to loosely mean: proportional to N
operations. "Big-O notation" [link]

Operation # operations (`Link`) # operations (py list) # operations (py dict)
Append to end O(N) O(1) N/A

Insert at beginning O(1) O(N) N/A

Contains O(N) O(N) O(1)*

Get item at index O(N) O(N) O(1)*

Set item at index O(N) O(N) O(1)*

...

Source for Python builtin data structs: [link]

* it turns out for dict, the average case is O(1), but worst case is
O(N). To learn more, read about hash tablesSome takeaways:

- `Link` is faster than list for inserting at the
beginning, but slower for inserting at the end

- `dict` is great for lookup-type usage!
Verdict: the "best" data structure to use is dependent
on your expected data usage patterns.

https://en.wikipedia.org/wiki/Big_O_notation
https://wiki.python.org/moin/TimeComplexity

Comparing data structures
Operation # operations (`Link`) # operations (py list) # operations (py dict)
Append to end O(N) O(1) N/A

Insert at beginning O(1) O(N) N/A

Contains O(N) O(N) O(1)*

Get item at index O(N) O(N) O(1)*

Set item at index O(N) O(N) O(1)*

...

Question: how can we modify
`Link`'s "Append to end" to reduce
its # operations from O(N) to O(1)?

Answer: have the linked list keep track of
both the beginning AND the end of the
linked list ("head", "tail").

`Link`: keeping track of `head` and `tail`

Question: what's the best way to keep track of the "head"
and the "tail"?

class Link:
 empty = ()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

 def append(self, lnk):
 last_lnk = get_last(self)
 last_lnk.rest = lnk

class LinkWithTail(Link):
 def __init__(self, first, rest=Link.empty):
 super().__init__(first, rest)
 self.tail = get_last(self)

 def append(self, lnk):
 self.tail.rest = lnk
 self.tail = lnk

Answer: here's one way, add a new `tail` instance attribute
to each linked list node. And, let's utilize inheritance too:

Now, `LinkWithTail.append()` is fast:
no need to traverse the linked list to
reach the end. Neat!

O(N)

O(1)

Question: any downsides with `LinkWithTail`?

Answer: now, creating new `LinkWithTail`
instances can be slow: each time we create a
new instance, we have to traverse the rest of
the linked list (`get_last()`).
Also, perhaps wasteful for each `LinkWithTail`
instance to keep track of the tail...

Idea: rather than add `tail` as an instance
variable to `LinkWithTail`, create a
"wrapper" class that keeps track of the
beginning and end nodes.

`Link`: keeping track of `head` and `tail`
class Link:
 empty = ()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

class LinkedList:
 def __init__(self, lnk):
 self.head = lnk
 self.tail = get_last(lnk)

 def append(self, lnk):
 self.tail.rest = lnk
 self.tail = lnk

O(1)

O(1)

>>> lnk_lst = LinkedList(Link(1, Link(2, Link(3))))
>>> lnk_lst.append(Link(4, Link(5))) # O(1)
>>> lnk_lst.head # __repr__ code not shown here
<1 2 3 4 5>

With this approach, we get:
- Fast O(1) append, via `tail`
- Reduced memory usage (single `tail` per

`LinkedList`, rather than a `tail` per each `Link`
instance)

- Arguably a better software design

An example of where we used composition
(`LinkedList` contains a `Link` as an attribute)
rather than inheritance (`LinkWithTail`).

Takeaway for C88C: now that we are comfortable writing code, we can start reasoning about code.
Things like: efficiency (Big-O notation) and software design (eg composition vs inheritance).

In cs61B, you will cover topics like this `LinkedList` rabbit hole, and more broadly study how fundamental data structures like list and dict
are implemented, and their efficiency for different operations. It's a neat class, and was one of my favorite undergrad CS courses!

Data structures for Data Science

● One reason to care about efficiency of data structures: big data!
● In the data science / AI / ML world, datasets are often too large to

fit on a single machine
○ Ex: a typical commercial laptop/desktop typically has

~16gb-32gb of CPU memory.
○ A big-data dataset can be terabytes (1000's of GB's) or even

petabytes (millions of GB's) large!
● To effectively work on these datasets, we need two* techniques

○ Efficient data structures to store the data
■ Ex: "smart" file formats like parquet [link]

○ Distributed computing techniques to efficiently process the data
■ Idea: use a cluster of machines to process data
■ Ex: Hadoop MapReduce, Apache Spark

By Apache Software Foundation - Vectorised by Vulphere based from
https://www.apache.org/logos/res/spark/spark.pdf, Apache License 2.0,
https://commons.wikimedia.org/w/index.php?curid=57832155

The Big Data
(terabytes,

petabytes, etc)

Examples: images/video, user
engagement logs, The Internet, etc.

* The secret third technique: lots of $, either in building+maintaining your own
compute cluster, or using cloud computing platforms like AWS EC2.

https://parquet.apache.org/

