
Welcome to Data C88C!

Lecture 18: Trees
Thursday, July 24th, 2025
Week 5
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

mailto:ekim555@berkeley.edu

Announcements

● "Clarification of due dates for Project01, Project02": [link]
• Project01 ("Maps"): due Friday July 25th, 11:59 PM PST

• Early due date (for +1 extra credit): Thursday July 24th, 11:59 PM PST
• Project02 ("Ants"): due Monday August 11th, 11:59 PM PST

• Checkpoint: Monday, August 4th, 11:59 PM PST
• Early due date (for +1 extra credit): Sunday August 10th, 11:59 PM PST

• Important: these dates already take into account the "+1 extra day" policy. No submissions will be
accepted after these due dates!

● Mid-semester survey feedback: [link]
• If 75% of the class completes this form by Monday July 28th at 11:59 PM, everyone will receive 1 point

of extra credit! If this goal is not met, nobody will receive the extra point.

https://edstem.org/us/courses/79702/discussion/6836184
https://edstem.org/us/courses/79702/discussion/6831459

Lecture Overview

● C88C + Python Lookback
● Trees

Python and C88C: where are we now?

● At this point, you've learned all of the Python syntax required for this course. Sweet!
● There are more language features we haven't covered in this course

○ Generators (`yield`), `nonlocal/global`
○ File I/O (aka reading/writing to files via `open()`)
○ Graphical user interface programming ("GUI")

● ...but you can get surprisingly far with just what you know now!
○ I bet you can read and understand 95% of production Python code. Neat!

● The remainder of the course
○ More problem solving and coding practice (Trees and recursion, Ants project)
○ Thinking deeper about code execution (Efficiency)
○ SQL

●

Trees

Tree Abstraction

6

Recursive description (wooden trees):

A tree has a root label and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

A tree starts at the root

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a label that can be any value

One node can be the parent/child of another

The top node is the root node

1 1

0 1

Root label

Branch
(also a tree)

Leaf
(also a tree)

Labels

Node
s

People often refer to labels by their locations: "each parent is the sum of its children"

Root of the whole tree

Root of a branch

 or Root Node

A Tree Class

• A tree has a root label and a
list of branches

• Each branch is a tree

7

t1 = Tree(
 3,
 [
 Tree(1),
 Tree(
 2,
 [
 Tree(1),
 Tree(1),
]
)
]
)

2

1

3

1

1

class Tree:
 """A tree has a label and a list of branches."""
 def __init__(self, label, branches=[]):
 self.label = label
 for branch in branches:
 assert isinstance(branch, Tree)
 self.branches = list(branches)

 def is_leaf(self):
 return not self.branches

Tree Processing

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

9

def count_leaves(t):

 """Count the leaves of a tree."""

 if t.is_leaf():

 return 1

 else:

 branch_counts = [count_leaves(b) for b in t.branches]

 return sum(branch_counts)

Writing Recursive Functions

Make sure you can answer the following before you start writing code:

• What recursive calls will you make?

• What type of values do they return?

• What do the possible return values mean?

• How can you use those return values to complete your implementation?

10

Example: Largest Label

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

1
1

def largest_label(t):

 """Return the largest label in tree t."""

 if t.is_leaf():

 return ________________

 else:

 return ____([________________ for b in t.branches] + ____________)

t.label

max [t.label]largest_label(b)

Example: Above Root

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

12

def above_root(t):

 """Print all the labels of t that are larger than the root label."""

 def process(u):

 if ____________________:

 print(____________)

 for b in ____________:

 process(b)

 process(t)

u.label > t.label

u.label

u.branches

Min Practice

Example: Minimum x

Given these two related lists of the same length:

xs = list(range(-10, 11))

ys = [x*x - 2*x + 1 for x in xs]
Write an expression that evaluates to the x in xs for which x*x - 2*x + 1 is smallest:

15

>>> xs

[-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> ys

[121, 100, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> ... some expression involving min ...

1

Answer:
>>> min(zip(xs, ys), key=lambda x_and_y: x_and_y[1])[0]

aka: argminx (x^2 - 2x + 1)

Figure: https://www.desmos.com/calculator

An alternate tree implementation

• A tree has a root label and a
list of branches

• Each branch is a tree

16

>>> tree(3, [tree(1),

... tree(2, [tree(1),

... tree(1)])])

[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches):
 return [label] + branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Instead of implementing a tree with OOP, let's implement it
using a list as the underlying representation:

def tree(label, branches=None):
 if not branches:
 branches = []
 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

An alternate tree implementation

17

def is_leaf(tree):
 return not branches(tree)

Verifies that tree is
bound to a list

Creates a list from a
sequence of branches

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

Verifies the tree
definition

• A tree has a root label and a
list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(label, branches=None):
 if not branches:
 branches = []
 for branch in branches:
 assert is_tree(branch)
 return [label] + list(branches)

An alternate tree implementation

18

def is_leaf(tree):
 return not branches(tree)

def label(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def largest_label_alt(t):
 """Return the largest label in tree t."""
 if is_leaf(t):
 return label(t)
 else:
 return max(
 [largest_label_alt(b) for b in branches(t)] + [label(t)]
)

def largest_label(t):
 """Return the largest label in tree t."""
 if t.is_leaf():
 return t.label
 else:
 return max(
 [largest_label(b) for b in t.branches] + [t.label]
)

vs OOP version

Takeaway: with the right abstractions, the same code (or, in this case, nearly the same
code) can work for different underlying representations of your data types.

Ex: a Tree implemented as a list vs as an object vs a dict, etc...

