
Welcome to Data C88C!

Lecture 19: Efficiency
Monday, July 28th, 2025
Week 6
Summer 2025
Instructor: Eric Kim (ekim555@berkeley.edu)

Rev 01: 2025-07-29 4:10 PM PST

mailto:ekim555@berkeley.edu


Announcements

● "Clarification of due dates for Project01, Project02": [link]
• Project01 ("Maps"): due Friday July 25th, 11:59 PM PST

• Late due date (for 75% credit [link]): Tuesday July 29th, 11:59 PM PST
● Mid-semester survey feedback: [link]

• If 75% of the class completes this form by Monday July 28th at 11:59 PM, everyone will receive 1 point 
of extra credit! If this goal is not met, nobody will receive the extra point.

• As of today (3pm PST): ~50% of the class has completed the survey
● Midterm regrades: due this Friday
● August 1st: Change Grade Option deadline

https://edstem.org/us/courses/79702/discussion/6836184
https://c88c.org/su25/articles/about-c88c/#late-policy
https://edstem.org/us/courses/79702/discussion/6831459


Lecture Overview

● Efficiency
● Orders of growth
● "Big-O" notation

● (For fun) P vs NP



Linked List Practice



Spring 2023 Midterm 2 Question 3(b)

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for some positive length n. 

Implement tens, which takes a non-empty linked list of numbers s represented as a Link instance. It prints all of the prefix 
sums of s that are multiples of 10 in increasing order of the length of the prefix. 
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def tens(s):
    """Print all prefix sums of Link s that are multiples of ten.
    >>> tens(Link(3, Link(9, Link(8, Link(10, Link(0, Link(14, Link(6))))))))
    20
    30
    30
    50 
    """
    def f(suffix, total):
        if total % 10 == 0:
             print(total)

        if ______________________________________:

            _____________________________________

    _____________________________________________f(s.rest, s.first)

suffix is not Link.empty

f(suffix.rest, total + suffix.first)

first: 3

rest:

Link instance

first: 9

rest:

Link instance

first: 8

rest: ...

Link instance

s:

suffix:



Tree Class



Tree Class

class Tree:
    def __init__(self, label, branches=[]):
        self.label = label
        for branch in branches:
            assert isinstance(branch, Tree)
        self.branches = list(branches)

def fib_tree(n):
    if n == 0 or n == 1:
        return Tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = left.label + right.label
        return Tree(fib_n, [left, right])

7

A Tree has a label and a list of branches; each branch is a Tree

    for branch in branches:
        assert is_tree(branch)
    return [label] + list(branches)
def label(tree):
    return tree[0]
def branches(tree):
    return tree[1:]

def tree(label, branches=[]):

def fib_tree(n):
    if n == 0 or n == 1:
        return tree(n)
    else:
        left = fib_tree(n-2)
        right = fib_tree(n-1)
        fib_n = label(left) + label(right)
        return tree(fib_n, [left, right])



Tree Practice



Implement twins, which takes a Tree t. It return the number of pairs of sibling nodes whose labels are equal.
def twins(t):
    """Count the pairs of sibling nodes with equal labels.

    >>> t1 = Tree(3, [Tree(4, [Tree(5), Tree(6)]), Tree(4, [Tree(5), Tree(5)])])
    >>> twins(t1)  # 4 and 5
    2
    >>> twins(Tree(1, [Tree(1, [Tree(2)]), Tree(2, [Tree(2)])]))
    0
    >>> twins(Tree(8, [t1, t1, t1]))  # 3 pairs of twins at the top, plus 2 in each branch
    9
    """
    count = 0
    n = _______________
    for i in range(n-1):
        for j in range(i+1, n):
            if __________________________________________:
                count += 1
    return ____________________________________________

Example: Count Twins
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len(t.branches)

t.branches[i].label == t.branches[j].label

count + sum([twins(b) for b in t.branches])
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5 6

4

5 5

3

4

5 6

4

5 5

3

4

5 6

4

5 5
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Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

1
0

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n-2) + fib(n-1)



Memoization



Memoization

Idea: Remember the results that have been computed before

def memo(f):

    cache = {}

    def memoized(n):

        if n not in cache:

            cache[n] = f(n)

        return cache[n]

    return memoized

Keys are arguments that map to 
return values

Same behavior as f, 
if f is a pure function
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(Demo)



Memoized Tree Recursion
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Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1



Measuring Efficiency



How to measure efficiency?

● Idea: use seconds ("wall clock time") to quantify how "fast" a code/function runs
○ Downside: time-based measurements will change based on which machine I 

run the benchmark on.
● Idea: instead, let's pursue a generic, hardware-agnostic way of measuring how 

"fast (or slow)" a program is: by counting simple operations*
●

https://www.freepik.com/free-vector/clock-basic-style_198044500.htm#fromView=keyword&pa
ge=1&position=21&uuid=f2e5c101-bca2-44c3-b7ff-4c055a8d5d0e&query=Clock+Clipart

?

https://www.freepik.com/free-vector/clock-basic-style_198044500.htm#fromView=keyword&page=1&position=21&uuid=f2e5c101-bca2-44c3-b7ff-4c055a8d5d0e&query=Clock+Clipart
https://www.freepik.com/free-vector/clock-basic-style_198044500.htm#fromView=keyword&page=1&position=21&uuid=f2e5c101-bca2-44c3-b7ff-4c055a8d5d0e&query=Clock+Clipart


Python: counting operations

● In Python, the following operations are considered a "single operation": 
○ creating a new primitive variable
○ reading/writing to a variable
○ integer/float arithmetic**
○ accessing an attribute

● Functions/methods: the runtime is the total number of operations in the function body
● Common list methods that are considered a "single operation" [link]: creating a new list, appending to a list
● Tip: it's not enough to "count lines" to estimate how much work a function does, as one line can be more expensive than 

other lines.

** Fun fact: in Python, integers are implemented as "bignum" that allow them to increase in value arbitrarily large (bounded by 
your computer's available CPU memory), but at the expense of mathematical operations (+, *, etc) taking longer if your integer 
grows larger. But, for the purposes of this class, let's assume integer operations are a single operation.

Floats (eg 3.14), however, do not have infinite range: they're bounded by the limits as dictated by the IEEE floating point format 
[link]

https://wiki.python.org/moin/TimeComplexity
https://en.wikipedia.org/wiki/IEEE_754


Example: counting operations in Python code

def f1(lst_nums):

    x = 0

    x = x + 2

    tmp_nums = []

    tmp_nums.append(42)

    total = 0

    for num in lst_nums:

        total = total + num

    return total

1 (create variable x and assign it the value 0)

3 (read x, add 2, write to x)

2 (create tmp_nums and assign it to a new list instance)

2: read tmp_nums, call the append method (which is itself a single operation)

1: create variable total and assign it the value 0

4 (per iter): read total, read num, add total + num, write to total

1: read and return total to caller

Repeat N times 
=> 

Total operations: 4 
* N

Total operations for `f1()`: 10 + (4 * N)

Let `lst_nums` be a list of integers with length N

O(N)
Tip: O(N) notation lets us not worry about this 
tedious bookkeeping, and instead let us think 
about the "big picture" of performance

Number of operations



Orders of Growth



Notation: Ω(N) vs O(N) vs Θ(N)

Let R(N) be a function that outputs the number of operations of a function f, in terms of the input problem size N.

Ω(R(N)): a lower-bound on growth

O(R(N)): an upper-bound on growth

Θ(R(N)): a "tight" bound on growth: the growth of a function is Θ(R(N)) if R(N) provides both a lower-bound AND 
upper-bound on the growth.

Note: Ω() and O() can be loose bounds. Ex: Ω(1) and O(infinity) are technically valid bounds for all functions, though not 
very useful bounds. In this class, for assignments/exams we'll only accept tight bounds for Ω() and O().

In this class: we'll generally only ask questions about tight bounds on O(). 
In classes like cs170 ("Algorithms"), you will study this topic in much greater detail

Aside: in practice, many people use "O(R(N))" when 
they actually mean "Θ(R(N))". Be mindful about the 

distinction, as there is a subtle difference



Common Orders of Growth
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Exponential growth.  E.g., recursive fib

Incrementing n multiplies time by a constant

Linear growth.

Logarithmic growth.

Doubling n only increments time by a constant

Constant growth. Increasing n doesn't affect time

Quadratic growth.

Incrementing n increases time by n times a constant

Incrementing n increases time by a constant



(reference) Examples
Order of growth Example function

O(1) def f1():
    return 4 * 2

O(N) def f2(nums):
    total = 0
    for n in nums:
        total += n
    return total

O(N^2) def f3(nums):
    total = 0
    for n1 in nums:
        for n2 in nums:
            total += n1 * n2
    return total

O(N^3) def f4(nums):
    total = 0
    for n1 in nums:
        for n2 in nums:
            total += f2(nums)
    return total



(reference) Examples
Order of growth Example function

O(log(N)) def f5(n):
    n_cur, out = n, 0
    while n_cur > 1:
        out += n_cur
        n_cur = n_cur // 2
    return out
    

O(2^N) def fib(n):
    if n == 0 or n == 1:
        return n
    return fib(n – 1) + fib(n – 2)

O(1) < O(log(N)) < O(N) < O(N^2) < O(2 ^ N)



Spring 2023 Midterm 2 Question 3(a) Part (iii)

Definition. A prefix sum of a sequence of numbers is the sum of the first n elements for some positive length n. 

(1 pt) What is the order of growth of the time to run prefix(s) in terms of the length of s? Assume append and + take one step 
(constant time) for any arguments.

def prefix(s):
    "Return a list of all prefix sums of list s."
    t = 0
    result = []
    for x in s:
        t = t + x
        result.append(t)
    return result
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Answer: O(len(s))

Follow-up Question: what is the order of growth for this alternate 
implementation?

def prefix_alt(s):
    "Return a list of all prefix sums of list s."
    t = 0
    result = []
    for i in range(len(s)):
        result.append(sum(s[:i]))
    return result

Answer: O(len(s)^2)

Recall: Python slice creates a copy, eg is an O(N) 
operation, where N is the number of elements to copy
And:
1 + 2 + 3 + … + N = N * (N + 1) / 2



(Aside) P vs NP

● One of the central, unanswered questions in theoretical computer science involves the orders of growth of algorithms
● Tractable orders of growth: polynomial and smaller

○ ex: O(1), O(log(N)), O(N), O(N^2), O(N^3), …
○ These are algorithms that we (humanity) can reasonably solve for very large problem sizes

● Intractable orders of growth:
○ ex: O(2^N), O(N^N), O(N!)
○ These are algorithms that we can only solve for small/medium problem sizes

List contains: checking if an element is in a list (`elem in lst`) is 
O(N), a tractable order of growth.

Traveling Salesman Problem [link]: Given a list of cities and the 
distances between each pair of cities, what is the shortest 
possible route that visits each city exactly once and returns to the 
origin city.

https://optimization.cbe.cornell.edu/index.php?title=Traveling_salesman_problem

Held-Karp algorithm [link]: where n is the number of cities

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://optimization.cbe.cornell.edu/index.php?title=Traveling_salesman_problem
https://en.wikipedia.org/wiki/Held%E2%80%93Karp_algorithm


(Aside) P vs NP

● Let's define the following sets of problems
● P: "easy" problems

○ Can verify in polynomial time
○ Can solve in polynomial time

● NP: set of problems that are easy to verify, but (currently) unknown if 
easy to solve
○ Can verify in polynomial time
○ Solving can be more expensive than polynomial time (eg 

exponential)
●

The Big Question: does the set P equal the set NP?

In other words: if a problem is easy to verify, does it also mean that it's easy to solve (implies P = NP)?

Or: is it possible that some problems are fundamentally difficult to solve (implies P != NP)?

One of the "Millenium Prize Problems" [link]. Winner gets $1M!

https://en.wikipedia.org/wiki/Millennium_Prize_Problems#P_versus_NP


(Aside) NP-Complete

● Some very smart people have shown that
○ (1) There exists a class of problems, NP-Complete, that is verifiable 

in polynomial time (in NP), and
○ (2) All other problems in NP can be converted to any NP-Complete 

problem in polynomial time
● NP-Complete examples

○ Traveling Salesman Problem (TSP)
○ Knapsack problem [link]
○ ...

● Currently (as of 2025), no known efficient (polynomial) algorithm exists 
to solve any NP-Complete problem.

https://optimization.cbe.cornell.edu/index.php?title=Traveling_salesman_problem

Crucially: if anyone finds an efficient (polynomial) algorithm to ANY 
NP-Complete problem, then we've found an efficient algorithm to ALL 

NP problems, which means we've discovered that: P = NP

https://en.wikipedia.org/wiki/Knapsack_problem
https://optimization.cbe.cornell.edu/index.php?title=Traveling_salesman_problem


(Aside) Implications of P = NP

● Most modern cryptographic digital security becomes broken / 
insecure*
○ public-key cryptography
○ Cryptographic hashing, which powers blockchain technology!

● Automatic mathematical proof solvers would take a gigantic leap 
forward

* as always, "it depends". If the algorithm is something like O(n^100) or has a gigantic constant factor, then 
the algorithm may be impractical in practice Image by OpenIcons from Pixabay

https://pixabay.com/users/openicons-28911/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=98723
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=98723


(Aside) P vs NP: What do experts think?

"Since 2002, William Gasarch has conducted three polls of researchers concerning this... Confidence that 
P ≠ NP has been increasing – in 2019, 88% believed P ≠ NP, as opposed to 83% in 2012 and 61% in 
2002. When restricted to experts, the 2019 answers became 99% believed P ≠ NP". [link_source]

https://en.wikipedia.org/wiki/William_Gasarch
https://en.wikipedia.org/wiki/P_versus_NP_problem#Context

